Suppr超能文献

脑电频谱的机器学习可对 GABA 能麻醉期间的无意识进行分类。

Machine learning of EEG spectra classifies unconsciousness during GABAergic anesthesia.

机构信息

Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States of America.

Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States of America.

出版信息

PLoS One. 2021 May 6;16(5):e0246165. doi: 10.1371/journal.pone.0246165. eCollection 2021.

Abstract

In current anesthesiology practice, anesthesiologists infer the state of unconsciousness without directly monitoring the brain. Drug- and patient-specific electroencephalographic (EEG) signatures of anesthesia-induced unconsciousness have been identified previously. We applied machine learning approaches to construct classification models for real-time tracking of unconscious state during anesthesia-induced unconsciousness. We used cross-validation to select and train the best performing models using 33,159 2s segments of EEG data recorded from 7 healthy volunteers who received increasing infusions of propofol while responding to stimuli to directly assess unconsciousness. Cross-validated models of unconsciousness performed very well when tested on 13,929 2s EEG segments from 3 left-out volunteers collected under the same conditions (median volunteer AUCs 0.99-0.99). Models showed strong generalization when tested on a cohort of 27 surgical patients receiving solely propofol collected in a separate clinical dataset under different circumstances and using different hardware (median patient AUCs 0.95-0.98), with model predictions corresponding with actions taken by the anesthesiologist during the cases. Performance was also strong for 17 patients receiving sevoflurane (alone or in addition to propofol) (median AUCs 0.88-0.92). These results indicate that EEG spectral features can predict unconsciousness, even when tested on a different anesthetic that acts with a similar neural mechanism. With high performance predictions of unconsciousness, we can accurately monitor anesthetic state, and this approach may be used to engineer infusion pumps to intelligibly respond to patients' neural activity.

摘要

在当前的麻醉实践中,麻醉师通过间接监测大脑来推断意识状态。先前已经确定了麻醉诱导无意识状态下的药物和患者特定的脑电图(EEG)特征。我们应用机器学习方法构建分类模型,以实时跟踪麻醉诱导无意识期间的无意识状态。我们使用交叉验证选择和训练表现最佳的模型,使用从 7 名健康志愿者记录的 33159 个 2 秒 EEG 数据片段,这些志愿者在接受异丙酚输注的同时对刺激做出反应,以直接评估无意识状态。在相同条件下从 3 名志愿者的 13929 个 2 秒 EEG 数据片段上测试时,无意识模型的性能非常好(志愿者中位数 AUC 为 0.99-0.99)。当在不同情况下使用不同硬件从单独的临床数据集收集的 27 名接受异丙酚单独或联合使用的手术患者的队列上进行测试时,模型表现出很强的泛化能力(患者中位数 AUC 为 0.95-0.98),模型预测与麻醉师在病例中采取的行动相对应。当对接受七氟醚(单独或联合异丙酚)的 17 名患者进行测试时,性能也很强(AUC 中位数为 0.88-0.92)。这些结果表明,即使在测试不同的具有相似神经机制的麻醉药物时,脑电图频谱特征也可以预测无意识状态。通过无意识状态的高预测性能,我们可以准确监测麻醉状态,并且这种方法可用于设计输液泵,以智能化地响应患者的神经活动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca3e/8101756/c98e5d0b8d32/pone.0246165.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验