Suppr超能文献

构建人类全身麻醉期间脑电图信号的可用于对照的模型。

Constructing a control-ready model of EEG signal during general anesthesia in humans.

作者信息

Abel John H, Badgeley Marcus A, Baum Taylor E, Chakravarty Sourish, Purdon Patrick L, Brown Emery N

机构信息

Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114.

Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139.

出版信息

IFAC Pap OnLine. 2020;53(2):15870-15876. doi: 10.1016/j.ifacol.2020.12.243. Epub 2021 Apr 14.

Abstract

Significant effort toward the automation of general anesthesia has been made in the past decade. One open challenge is in the development of control-ready patient models for closed-loop anesthesia delivery. Standard depth-of-anesthesia tracking does not readily capture inter-individual differences in response to anesthetics, especially those due to age, and does not aim to predict a relationship between a control input (infused anesthetic dose) and system state (commonly, a function of electroencephalography (EEG) signal). In this work, we developed a control-ready patient model for closed-loop propofol-induced anesthesia using data recorded during a clinical study of EEG during general anesthesia in ten healthy volunteers. We used principal component analysis to identify the low-dimensional state-space in which EEG signal evolves during anesthesia delivery. We parameterized the response of the EEG signal to changes in propofol target-site concentration using logistic models. We note that inter-individual differences in anesthetic sensitivity may be captured by varying a constant cofactor of the predicted effect-site concentration. We linked the EEG dose-response with the control input using a pharmacokinetic model. Finally, we present a simple nonlinear model predictive control demonstration of how such a closed-loop system would work.

摘要

在过去十年中,人们在全身麻醉自动化方面付出了巨大努力。一个尚未解决的挑战是开发用于闭环麻醉给药的可用于控制的患者模型。标准的麻醉深度跟踪不能轻易捕捉个体对麻醉剂反应的差异,尤其是因年龄导致的差异,并且其目的不是预测控制输入(输注麻醉剂剂量)与系统状态(通常是脑电图(EEG)信号的函数)之间的关系。在这项工作中,我们利用十名健康志愿者在全身麻醉期间进行脑电图临床研究时记录的数据,开发了一种用于闭环丙泊酚诱导麻醉的可用于控制的患者模型。我们使用主成分分析来识别麻醉给药期间脑电图信号演变的低维状态空间。我们使用逻辑模型对脑电图信号对丙泊酚靶位浓度变化的响应进行参数化。我们注意到,麻醉敏感性的个体差异可以通过改变预测效应部位浓度的一个常数辅助因子来捕捉。我们使用药代动力学模型将脑电图剂量反应与控制输入联系起来。最后,我们展示了一个简单的非线性模型预测控制示例,说明这样一个闭环系统将如何工作。

相似文献

本文引用的文献

1
Pharmacodynamic modeling of propofol-induced general anesthesia in young adults.年轻人中丙泊酚诱导全身麻醉的药效学建模
Health Innov Point Care Conf. 2017 Nov;2017:44-47. doi: 10.1109/hic.2017.8227580. Epub 2017 Dec 21.
9
A brain-machine interface for control of medically-induced coma.用于控制药物诱导昏迷的脑机接口。
PLoS Comput Biol. 2013 Oct;9(10):e1003284. doi: 10.1371/journal.pcbi.1003284. Epub 2013 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验