Suppr超能文献

CRISPR-Cas 介导的染色体工程在作物改良和合成生物学中的应用。

CRISPR-Cas-mediated chromosome engineering for crop improvement and synthetic biology.

机构信息

Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.

出版信息

Nat Plants. 2021 May;7(5):566-573. doi: 10.1038/s41477-021-00910-4. Epub 2021 May 6.

Abstract

Plant breeding relies on the presence of genetic variation, as well as on the ability to break or stabilize genetic linkages between traits. The development of the genome-editing tool clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) has allowed breeders to induce genetic variability in a controlled and site-specific manner, and to improve traits with high efficiency. However, the presence of genetic linkages is a major obstacle to the transfer of desirable traits from wild species to their cultivated relatives. One way to address this issue is to create mutants with deficiencies in the meiotic recombination machinery, thereby enhancing global crossover frequencies between homologous parental chromosomes. Although this seemed to be a promising approach at first, thus far, no crossover frequencies could be enhanced in recombination-cold regions of the genome. Additionally, this approach can lead to unintended genomic instabilities due to DNA repair defects. Therefore, efforts have been undertaken to obtain predefined crossovers between homologues by inducing site-specific double-strand breaks (DSBs) in meiotic, as well as in somatic plant cells using CRISPR-Cas tools. However, this strategy has not been able to produce a substantial number of heritable homologous recombination-based crossovers. Most recently, heritable chromosomal rearrangements, such as inversions and translocations, have been obtained in a controlled way using CRISPR-Cas in plants. This approach unlocks a completely new way of manipulating genetic linkages, one in which the DSBs are induced in somatic cells, enabling the formation of chromosomal rearrangements in the megabase range, by DSB repair via non-homologous end-joining. This technology might also enable the restructuring of genomes more globally, resulting in not only the obtainment of synthetic plant chromosome, but also of novel plant species.

摘要

植物育种依赖于遗传变异的存在,以及打破或稳定性状之间遗传连锁的能力。基因组编辑工具簇状规则间隔短回文重复序列 (CRISPR)-CRISPR 相关蛋白 (Cas) 的发展,使育种者能够以可控和特定的方式诱导遗传变异,并高效地改良性状。然而,遗传连锁的存在是将理想性状从野生种转移到其栽培种的主要障碍。解决这个问题的一种方法是创建减数分裂重组机制缺陷的突变体,从而提高同源亲本染色体之间的整体交叉频率。尽管这在一开始似乎是一种很有前途的方法,但迄今为止,还不能提高基因组中重组冷区的交叉频率。此外,这种方法可能会由于 DNA 修复缺陷而导致意外的基因组不稳定性。因此,人们努力通过在减数分裂以及使用 CRISPR-Cas 工具的体细胞中诱导特定位置的双链断裂 (DSB),来获得同源物之间的预定交叉。然而,这种策略还不能产生大量可遗传的同源重组交叉。最近,通过在植物中使用 CRISPR-Cas 以可控的方式获得了可遗传的染色体重排,如倒位和易位。这种方法开启了一种全新的操纵遗传连锁的方式,其中 DSB 是在体细胞中诱导的,通过非同源末端连接进行 DSB 修复,从而在兆碱基范围内形成染色体重排。这项技术还可能使基因组的重组更具全局性,不仅获得合成植物染色体,而且获得新的植物物种。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验