Lee Min Sung, Jang Jong-Hwan, Kang Sora, Han Ga In, Yoo Ah-Hyun, Jo Yong-Yeon, Son Jeong Min, Kwon Joon-Myoung, Lee Sooyeon, Lee Ji Sung, Lee Hak Seung, Kim Kyung-Hee
Digital Healthcare Institute, Sejong Medical Research Institute, Bucheon 14754, Republic of Korea.
Medical AI Co., Ltd., Seoul 06180, Republic of Korea.
Diagnostics (Basel). 2025 Jul 22;15(15):1837. doi: 10.3390/diagnostics15151837.
Heart failure (HF) is a growing global health burden, yet early detection remains challenging due to the limitations of traditional diagnostic tools such as electrocardiograms (ECGs). Recent advances in deep learning offer new opportunities to identify left ventricular systolic dysfunction (LVSD), a key indicator of HF, from ECG data. This study validates AiTiALVSD, our previously developed artificial intelligence (AI)-enabled ECG Software as a Medical Device, for its accuracy, transparency, and robustness in detecting LVSD. This retrospective single-center cohort study involved patients suspected of LVSD. The AiTiALVSD model, based on a deep learning algorithm, was evaluated against echocardiographic ejection fraction values. To enhance model transparency, the study employed Testing with Concept Activation Vectors (TCAV), clustering analysis, and robustness testing against ECG noise and lead reversals. The study involved 688 participants and found AiTiALVSD to have a high diagnostic performance, with an AUROC of 0.919. There was a significant correlation between AiTiALVSD scores and left ventricular ejection fraction values, confirming the model's predictive accuracy. TCAV analysis showed the model's alignment with medical knowledge, establishing its clinical plausibility. Despite its robustness to ECG artifacts, there was a noted decrease in specificity in the presence of ECG noise. AiTiALVSD's high diagnostic accuracy, transparency, and resilience to common ECG discrepancies underscore its potential for early LVSD detection in clinical settings. This study highlights the importance of transparency and robustness in AI-ECG, setting a new benchmark in cardiac care.
心力衰竭(HF)是一个日益加重的全球健康负担,但由于传统诊断工具(如心电图(ECG))的局限性,早期检测仍然具有挑战性。深度学习的最新进展为从心电图数据中识别左心室收缩功能障碍(LVSD)提供了新的机会,LVSD是HF的一个关键指标。本研究验证了我们之前开发的作为医疗设备的人工智能(AI)心电图软件AiTiALVSD在检测LVSD方面的准确性、透明度和稳健性。这项回顾性单中心队列研究纳入了疑似LVSD的患者。基于深度学习算法的AiTiALVSD模型与超声心动图射血分数值进行了评估对比。为了提高模型的透明度,该研究采用了概念激活向量测试(TCAV)、聚类分析以及针对心电图噪声和导联反转的稳健性测试。该研究涉及688名参与者,发现AiTiALVSD具有较高的诊断性能,曲线下面积(AUROC)为0.919。AiTiALVSD评分与左心室射血分数值之间存在显著相关性,证实了该模型的预测准确性。TCAV分析表明该模型与医学知识相符,确立了其临床合理性。尽管它对心电图伪影具有稳健性,但在存在心电图噪声的情况下,特异性有所下降。AiTiALVSD的高诊断准确性、透明度以及对常见心电图差异的耐受性凸显了其在临床环境中早期检测LVSD的潜力。这项研究强调了人工智能心电图中透明度和稳健性的重要性,为心脏护理设定了新的基准。
Diagnostics (Basel). 2025-7-22
Cochrane Database Syst Rev. 2022-5-20
J Med Internet Res. 2025-6-23
NPJ Digit Med. 2025-2-17
Eur Heart J Digit Health. 2024-8-19
Eur Heart J. 2024-9-14
J Am Coll Cardiol. 2024-6-18
NPJ Digit Med. 2024-1-26
Am J Obstet Gynecol MFM. 2023-12
Circulation. 2023-8-29