文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于左心室收缩功能障碍的透明且稳健的人工智能驱动心电图模型

Transparent and Robust Artificial Intelligence-Driven Electrocardiogram Model for Left Ventricular Systolic Dysfunction.

作者信息

Lee Min Sung, Jang Jong-Hwan, Kang Sora, Han Ga In, Yoo Ah-Hyun, Jo Yong-Yeon, Son Jeong Min, Kwon Joon-Myoung, Lee Sooyeon, Lee Ji Sung, Lee Hak Seung, Kim Kyung-Hee

机构信息

Digital Healthcare Institute, Sejong Medical Research Institute, Bucheon 14754, Republic of Korea.

Medical AI Co., Ltd., Seoul 06180, Republic of Korea.

出版信息

Diagnostics (Basel). 2025 Jul 22;15(15):1837. doi: 10.3390/diagnostics15151837.


DOI:10.3390/diagnostics15151837
PMID:40804802
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12346549/
Abstract

Heart failure (HF) is a growing global health burden, yet early detection remains challenging due to the limitations of traditional diagnostic tools such as electrocardiograms (ECGs). Recent advances in deep learning offer new opportunities to identify left ventricular systolic dysfunction (LVSD), a key indicator of HF, from ECG data. This study validates AiTiALVSD, our previously developed artificial intelligence (AI)-enabled ECG Software as a Medical Device, for its accuracy, transparency, and robustness in detecting LVSD. This retrospective single-center cohort study involved patients suspected of LVSD. The AiTiALVSD model, based on a deep learning algorithm, was evaluated against echocardiographic ejection fraction values. To enhance model transparency, the study employed Testing with Concept Activation Vectors (TCAV), clustering analysis, and robustness testing against ECG noise and lead reversals. The study involved 688 participants and found AiTiALVSD to have a high diagnostic performance, with an AUROC of 0.919. There was a significant correlation between AiTiALVSD scores and left ventricular ejection fraction values, confirming the model's predictive accuracy. TCAV analysis showed the model's alignment with medical knowledge, establishing its clinical plausibility. Despite its robustness to ECG artifacts, there was a noted decrease in specificity in the presence of ECG noise. AiTiALVSD's high diagnostic accuracy, transparency, and resilience to common ECG discrepancies underscore its potential for early LVSD detection in clinical settings. This study highlights the importance of transparency and robustness in AI-ECG, setting a new benchmark in cardiac care.

摘要

心力衰竭(HF)是一个日益加重的全球健康负担,但由于传统诊断工具(如心电图(ECG))的局限性,早期检测仍然具有挑战性。深度学习的最新进展为从心电图数据中识别左心室收缩功能障碍(LVSD)提供了新的机会,LVSD是HF的一个关键指标。本研究验证了我们之前开发的作为医疗设备的人工智能(AI)心电图软件AiTiALVSD在检测LVSD方面的准确性、透明度和稳健性。这项回顾性单中心队列研究纳入了疑似LVSD的患者。基于深度学习算法的AiTiALVSD模型与超声心动图射血分数值进行了评估对比。为了提高模型的透明度,该研究采用了概念激活向量测试(TCAV)、聚类分析以及针对心电图噪声和导联反转的稳健性测试。该研究涉及688名参与者,发现AiTiALVSD具有较高的诊断性能,曲线下面积(AUROC)为0.919。AiTiALVSD评分与左心室射血分数值之间存在显著相关性,证实了该模型的预测准确性。TCAV分析表明该模型与医学知识相符,确立了其临床合理性。尽管它对心电图伪影具有稳健性,但在存在心电图噪声的情况下,特异性有所下降。AiTiALVSD的高诊断准确性、透明度以及对常见心电图差异的耐受性凸显了其在临床环境中早期检测LVSD的潜力。这项研究强调了人工智能心电图中透明度和稳健性的重要性,为心脏护理设定了新的基准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b64b/12346549/3bbac6ffb1ac/diagnostics-15-01837-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b64b/12346549/cfddf44048fd/diagnostics-15-01837-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b64b/12346549/06ae125b092b/diagnostics-15-01837-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b64b/12346549/053b5a1e8a3c/diagnostics-15-01837-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b64b/12346549/f34972a1beae/diagnostics-15-01837-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b64b/12346549/3bbac6ffb1ac/diagnostics-15-01837-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b64b/12346549/cfddf44048fd/diagnostics-15-01837-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b64b/12346549/06ae125b092b/diagnostics-15-01837-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b64b/12346549/053b5a1e8a3c/diagnostics-15-01837-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b64b/12346549/f34972a1beae/diagnostics-15-01837-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b64b/12346549/3bbac6ffb1ac/diagnostics-15-01837-g005.jpg

相似文献

[1]
Transparent and Robust Artificial Intelligence-Driven Electrocardiogram Model for Left Ventricular Systolic Dysfunction.

Diagnostics (Basel). 2025-7-22

[2]
Artificial Intelligence Enabled Prediction of Heart Failure Risk from Single-lead Electrocardiograms.

medRxiv. 2024-12-21

[3]
Artificial intelligence enabled ECG screening for left ventricular systolic dysfunction: a systematic review.

Heart Fail Rev. 2023-3

[4]
Artificial intelligence in ECG-based diagnosis of low left ventricular ejection fraction: a systematic review and meta-analysis.

Biomed Eng Lett. 2025-5-14

[5]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[6]
Ensemble Deep Learning Algorithm for Structural Heart Disease Screening Using Electrocardiographic Images: PRESENT SHD.

J Am Coll Cardiol. 2025-4-1

[7]
Diagnostic accuracy of artificial-intelligence-based electrocardiogram algorithm to estimate heart failure with reduced ejection fraction: A systematic review and meta-analysis.

Curr Probl Cardiol. 2025-4

[8]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[9]
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.

J Med Internet Res. 2025-6-23

[10]
An Artificial Intelligence Algorithm for Early Detection of Left Ventricular Systolic Dysfunction in Patients with Normal Sinus Rhythm.

J Clin Med. 2025-6-15

本文引用的文献

[1]
Clinically meaningful interpretability of an AI model for ECG classification.

NPJ Digit Med. 2025-2-17

[2]
Heart failure risk stratification using artificial intelligence applied to electrocardiogram images: a multinational study.

Eur Heart J. 2025-3-13

[3]
Deep learning algorithm for predicting left ventricular systolic dysfunction in atrial fibrillation with rapid ventricular response.

Eur Heart J Digit Health. 2024-8-19

[4]
Artificial intelligence-enhanced patient evaluation: bridging art and science.

Eur Heart J. 2024-9-14

[5]
Artificial Intelligence in Cardiovascular Care-Part 2: Applications: JACC Review Topic of the Week.

J Am Coll Cardiol. 2024-6-18

[6]
Transparency of artificial intelligence/machine learning-enabled medical devices.

NPJ Digit Med. 2024-1-26

[7]
Electrocardiogram-based deep learning model to screen peripartum cardiomyopathy.

Am J Obstet Gynecol MFM. 2023-12

[8]
Explainable-by-design: Challenges, pitfalls, and opportunities for the clinical adoption of AI-enabled ECG.

J Electrocardiol. 2023

[9]
Detection of Left Ventricular Systolic Dysfunction From Electrocardiographic Images.

Circulation. 2023-8-29

[10]
Noise-robustness test for ultrasound breast nodule neural network models as medical devices.

Front Oncol. 2023-6-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索