Suppr超能文献

一种基于深度学习特征手工制作的新型融合模型,用于使用胸部X光图像进行COVID-19诊断和分类。

A novel hand-crafted with deep learning features based fusion model for COVID-19 diagnosis and classification using chest X-ray images.

作者信息

Shankar K, Perumal Eswaran

机构信息

Department of Computer Applications, Alagappa University, Karaikudi, India.

出版信息

Complex Intell Systems. 2021;7(3):1277-1293. doi: 10.1007/s40747-020-00216-6. Epub 2020 Nov 12.

Abstract

COVID-19 pandemic is increasing in an exponential rate, with restricted accessibility of rapid test kits. So, the design and implementation of COVID-19 testing kits remain an open research problem. Several findings attained using radio-imaging approaches recommend that the images comprise important data related to coronaviruses. The application of recently developed artificial intelligence (AI) techniques, integrated with radiological imaging, is helpful in the precise diagnosis and classification of the disease. In this view, the current research paper presents a novel fusion model hand-crafted with deep learning features called FM-HCF-DLF model for diagnosis and classification of COVID-19. The proposed FM-HCF-DLF model comprises three major processes, namely Gaussian filtering-based preprocessing, FM for feature extraction and classification. FM model incorporates the fusion of handcrafted features with the help of local binary patterns (LBP) and deep learning (DL) features and it also utilizes convolutional neural network (CNN)-based Inception v3 technique. To further improve the performance of Inception v3 model, the learning rate scheduler using Adam optimizer is applied. At last, multilayer perceptron (MLP) is employed to carry out the classification process. The proposed FM-HCF-DLF model was experimentally validated using chest X-ray dataset. The experimental outcomes inferred that the proposed model yielded superior performance with maximum sensitivity of 93.61%, specificity of 94.56%, precision of 94.85%, accuracy of 94.08%, score of 93.2% and kappa value of 93.5%.

摘要

新冠疫情正呈指数级增长,快速检测试剂盒的可及性受限。因此,新冠病毒检测试剂盒的设计与实施仍是一个有待研究的问题。使用放射成像方法获得的多项研究结果表明,这些图像包含与冠状病毒相关的重要数据。将最近开发的人工智能(AI)技术与放射成像相结合,有助于对该疾病进行精确诊断和分类。有鉴于此,当前的研究论文提出了一种全新的融合模型,即基于深度学习特征手工构建的FM-HCF-DLF模型,用于新冠病毒的诊断和分类。所提出的FM-HCF-DLF模型包括三个主要过程,即基于高斯滤波的预处理、用于特征提取和分类的FM。FM模型借助局部二值模式(LBP)将手工特征与深度学习(DL)特征进行融合,并且还利用基于卷积神经网络(CNN)的Inception v3技术。为了进一步提高Inception v3模型的性能,应用了使用Adam优化器的学习率调度器。最后,采用多层感知器(MLP)进行分类过程。所提出的FM-HCF-DLF模型使用胸部X光数据集进行了实验验证。实验结果表明,所提出的模型具有卓越的性能,最大灵敏度为93.61%,特异性为94.56%,精度为94.85%,准确率为94.08%,得分93.2%,kappa值为93.5%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f6b/7659408/e7fc2d754fb4/40747_2020_216_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验