Suppr超能文献

QDECR:R语言中一个灵活、可扩展的逐顶点分析框架。

QDECR: A Flexible, Extensible Vertex-Wise Analysis Framework in R.

作者信息

Lamballais Sander, Muetzel Ryan L

机构信息

Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands.

Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, Netherlands.

出版信息

Front Neuroinform. 2021 Apr 22;15:561689. doi: 10.3389/fninf.2021.561689. eCollection 2021.

Abstract

The cerebral cortex is fundamental to the functioning of the mind and body. cortical morphology can be studied through magnetic resonance imaging in several ways, including reconstructing surface-based models of the cortex. However, existing software for surface-based statistical analyses cannot accommodate "big data" or commonly used statistical methods such as the imputation of missing data, extensive bias correction, and non-linear modeling. To address these shortcomings, we developed the QDECR package, a flexible and extensible R package for group-level statistical analysis of cortical morphology. QDECR was written with large population-based epidemiological studies in mind and was designed to fully utilize the extensive modeling options in R. QDECR currently supports vertex-wise linear regression. Design matrix generation can be done through simple, familiar R formula specification, and includes user-friendly extensions for R options such as polynomials, splines, interactions and other terms. QDECR can handle unimputed and imputed datasets with thousands of participants. QDECR has a modular design, and new statistical models can be implemented which utilize several aspects from other generic modules which comprise QDECR. In summary, QDECR provides a framework for vertex-wise surface-based analyses that enables flexible statistical modeling and features commonly used in population-based and clinical studies, which have until now been largely absent from neuroimaging research.

摘要

大脑皮层对于身心功能至关重要。可以通过磁共振成像以多种方式研究皮层形态,包括重建基于表面的皮层模型。然而,现有的基于表面的统计分析软件无法处理“大数据”或常用的统计方法,如缺失数据的插补、广泛的偏差校正和非线性建模。为了解决这些缺点,我们开发了QDECR软件包,这是一个灵活且可扩展的R软件包,用于皮层形态的组级统计分析。QDECR的编写考虑了基于大量人群的流行病学研究,并旨在充分利用R中广泛的建模选项。QDECR目前支持逐顶点线性回归。设计矩阵生成可以通过简单、熟悉的R公式规范来完成,并且包括对R选项(如多项式、样条、交互项和其他项)的用户友好扩展。QDECR可以处理包含数千名参与者的未插补和插补数据集。QDECR具有模块化设计,可以实现新的统计模型,这些模型利用了构成QDECR的其他通用模块的几个方面。总之,QDECR为基于表面的逐顶点分析提供了一个框架,能够进行灵活的统计建模,并具有在基于人群和临床研究中常用的特征,而这些特征在神经成像研究中迄今基本缺失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe64/8100226/7ab837dfc44a/fninf-15-561689-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验