Suppr超能文献

基于表面的解剖分析中的假阳性率。

False positive rates in surface-based anatomical analysis.

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Radiology Department, Boston, MA, USA.

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Radiology Department, Boston, MA, USA.

出版信息

Neuroimage. 2018 May 1;171:6-14. doi: 10.1016/j.neuroimage.2017.12.072. Epub 2017 Dec 26.

Abstract

The false positive rates (FPR) for surface-based group analysis of cortical thickness, surface area, and volume were evaluated for parametric and non-parametric clusterwise correction for multiple comparisons for a range of smoothing levels and cluster-forming thresholds (CFT) using real data under group assignments that should not yield significant results. For whole cortical surface analysis, thickness showed modest inflation in parametric FPRs above the nominal level (10% versus 5%). Surface area and volume FPRs were much higher (20-30%). In the analysis of interhemispheric thickness asymmetries, FPRs were well controlled by parametric correction, but FPRs for surface area and volume asymmetries were still inflated. In all cases, non-parametric permutation adequately controlled the FPRs. It was found that inflated parametric FPRs were caused by violations in the parametric assumptions, namely a heavier-than-Gaussian spatial correlation. The non-Gaussian spatial correlation originates from anatomical features unique to individuals (e.g., a patch of cortex slightly thicker or thinner than average) and is not a by-product of scanning or processing. Thickness performed better than surface area and volume because thickness does not require a Jacobian correction.

摘要

基于表面的皮质厚度、表面积和体积的组分析的假阳性率 (FPR) 使用实际数据进行了评估,这些数据在不应产生显著结果的分组下进行了参数和非参数聚类校正的多重比较,用于各种平滑水平和聚类形成阈值 (CFT)。对于整个皮质表面分析,在名义水平(10% 对 5%)之上,参数 FPR 适度膨胀。表面积和体积 FPR 更高(20-30%)。在分析大脑半球间厚度不对称性时,参数校正很好地控制了 FPR,但表面积和体积不对称性的 FPR 仍然膨胀。在所有情况下,非参数置换都充分控制了 FPR。发现膨胀的参数 FPR 是由于参数假设的违反造成的,即比高斯分布更重的空间相关性。非高斯空间相关性源于个体特有的解剖特征(例如,皮质的一小块略厚或略薄于平均值),而不是扫描或处理的副产品。厚度的表现优于表面积和体积,因为厚度不需要雅可比校正。

相似文献

1
False positive rates in surface-based anatomical analysis.基于表面的解剖分析中的假阳性率。
Neuroimage. 2018 May 1;171:6-14. doi: 10.1016/j.neuroimage.2017.12.072. Epub 2017 Dec 26.
3
False positive rates in positron emission tomography (PET) voxelwise analyses.正电子发射断层扫描(PET)体素分析中的假阳性率。
J Cereb Blood Flow Metab. 2021 Jul;41(7):1647-1657. doi: 10.1177/0271678X20974961. Epub 2020 Nov 26.
10
Multimodal surface matching with higher-order smoothness constraints.多模态曲面匹配的高阶平滑约束。
Neuroimage. 2018 Feb 15;167:453-465. doi: 10.1016/j.neuroimage.2017.10.037. Epub 2017 Oct 31.

引用本文的文献

本文引用的文献

1
Redefine statistical significance.重新定义统计学显著性。
Nat Hum Behav. 2018 Jan;2(1):6-10. doi: 10.1038/s41562-017-0189-z.
7
Faster permutation inference in brain imaging.脑成像中更快的排列推断
Neuroimage. 2016 Nov 1;141:502-516. doi: 10.1016/j.neuroimage.2016.05.068. Epub 2016 Jun 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验