Suppr超能文献

利用互联网搜索查询估算哮喘症状发作:滞后时间序列分析。

Estimation of Asthma Symptom Onset Using Internet Search Queries: Lag-Time Series Analysis.

机构信息

Department of Epidemiology and Biostatistics, Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, United States.

Aix Marseille University, CNRS, AMSE, Marseille, France.

出版信息

JMIR Public Health Surveill. 2021 May 10;7(5):e18593. doi: 10.2196/18593.

Abstract

BACKGROUND

Asthma affects over 330 million people worldwide. Timing of an asthma event is extremely important and lack of identification of asthma increases the risk of death. A major challenge for health systems is the length of time between symptom onset and care seeking, which could result in delayed treatment initiation and worsening of symptoms.

OBJECTIVE

This study evaluates the utility of the internet search query data for the identification of the onset of asthma symptoms.

METHODS

Pearson correlation coefficients between the time series of hospital admissions and Google searches were computed at lag times from 4 weeks before hospital admission to 4 weeks after hospital admission. An autoregressive integrated moving average (ARIMAX) model with an autoregressive process at lags of 1 and 2 and Google searches at weeks -1 and -2 as exogenous variables were conducted to validate our correlation results.

RESULTS

Google search volume for asthma had the highest correlation at 2 weeks before hospital admission. The ARIMAX model using an autoregressive process showed that the relative searches from Google about asthma were significant at lags 1 (P<.001) and 2 (P=.04).

CONCLUSIONS

Our findings demonstrate that internet search queries may provide a real-time signal for asthma events and may be useful to measure the timing of symptom onset.

摘要

背景

哮喘影响着全球超过 3.3 亿人。哮喘发作的时间极其重要,而哮喘发作的识别不足会增加死亡风险。卫生系统面临的一个主要挑战是从症状出现到寻求治疗的时间间隔,这可能导致治疗延迟和症状恶化。

目的

本研究评估了互联网搜索查询数据在识别哮喘症状发作方面的效用。

方法

计算了住院时间序列与谷歌搜索之间的皮尔逊相关系数,滞后时间从住院前 4 周到住院后 4 周。进行了自回归综合移动平均(ARIMAX)模型分析,其中包括滞后 1 天和 2 天的自回归过程,以及作为外生变量的谷歌搜索在周-1 和周-2 的数据。

结果

谷歌搜索哮喘的搜索量在住院前 2 周相关性最高。使用自回归过程的 ARIMAX 模型显示,谷歌关于哮喘的相对搜索在滞后 1 天(P<.001)和滞后 2 天(P=.04)时具有显著意义。

结论

我们的研究结果表明,互联网搜索查询可能为哮喘发作提供实时信号,并且可能有助于测量症状发作的时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf07/8145078/8a7196a06ef5/publichealth_v7i5e18593_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验