Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Scand J Work Environ Health. 2021 Jul 1;47(5):395-403. doi: 10.5271/sjweh.3957. Epub 2021 Mar 31.
Data mining can complement traditional hypothesis-based approaches in characterizing unhealthy work exposures. We used it to derive a hypothesis-free characterization of working hour patterns in shift work and their associations with sickness absence (SA).
In this prospective cohort study, complete payroll-based work hours and SA dates were extracted from a shift-scheduling register from 2008 to 2019 on 6029 employees from a hospital district in Southwestern Finland. We applied permutation distribution clustering to time series of successive shift lengths, between-shift rest periods, and shift starting times to identify clusters of similar working hour patterns over time. We examined associations of clusters spanning on average 23 months with SA during the following 23 months.
We identified eight distinct working hour patterns in shift work: (i) regular morning (M)/evening (E) work, weekends off; (ii) irregular M work; (iii) irregular M/E/night (N) work; (iv) regular M work, weekends off; (v) irregular, interrupted M/E/N work; (vi) variable M work, weekends off; (vii) quickly rotating M/E work, non-standard weeks; and (viii) slowly rotating M/E work, non-standard weeks. The associations of these eight working-hour clusters with risk of future SA varied. The cluster of irregular, interrupted M/E/N work was the strongest predictor of increased SA (days per year) with an incidence rate ratio of 1.77 (95% confidence interval 1.74-1.80) compared to regular M/E work, weekends off.
This data-mining suggests that hypothesis-free approaches can contribute to scientific understanding of healthy working hour characteristics and complement traditional hypothesis-driven approaches.
数据挖掘可以补充传统的基于假设的方法,用于描述不健康的工作暴露。我们使用它来推导出一种无假设的轮班工作模式特征描述,以及其与病假(SA)的关联。
在这项前瞻性队列研究中,我们从芬兰西南部一个医院区的轮班排班登记处提取了 2008 年至 2019 年期间 6029 名员工的完整基于工资的工作时间和 SA 日期。我们应用排列分布聚类方法对连续轮班长度、轮班之间休息时间和轮班开始时间的时间序列进行分析,以识别随时间变化的相似工作模式聚类。我们研究了跨越平均 23 个月的聚类与接下来 23 个月的 SA 之间的关联。
我们在轮班工作中确定了八种不同的工作模式:(i)规律的早晚班(M/E)工作,周末休息;(ii)不规则的 M 班工作;(iii)不规则的 M/E/N 班工作;(iv)规律的 M 班工作,周末休息;(v)不规则、中断的 M/E/N 班工作;(vi)可变的 M 班工作,周末休息;(vii)快速轮转的 M/E 班工作,非标准周;(viii)缓慢轮转的 M/E 班工作,非标准周。这些轮班模式聚类与未来 SA 风险的关联各不相同。不规则、中断的 M/E/N 班工作模式聚类是预测 SA(每年天数)增加的最强预测因子,与规律的 M/E 班工作、周末休息相比,其发病率比为 1.77(95%置信区间 1.74-1.80)。
这项数据挖掘表明,无假设方法可以有助于科学理解健康的工作时间特征,并补充传统的基于假设的方法。