Suppr超能文献

基于机器学习的脓毒症相关性急性肾损伤预测模型:系统评价。

Predictive models of sepsis-associated acute kidney injury based on machine learning: a scoping review.

机构信息

Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Ren Fail. 2024 Dec;46(2):2380748. doi: 10.1080/0886022X.2024.2380748. Epub 2024 Jul 31.

Abstract

BACKGROUND

With the development of artificial intelligence, the application of machine learning to develop predictive models for sepsis-associated acute kidney injury has made potential breakthroughs in early identification, grading, diagnosis, and prognosis determination.

METHODS

Here, we conducted a systematic search of the PubMed, Cochrane Library, Embase (Ovid), Web of Science, and Scopus databases on April 28, 2023, and screened relevant literature. Then, we comprehensively extracted relevant data related to machine learning algorithms, predictors, and predicted objectives. We subsequently performed a critical evaluation of research quality, data aggregation, and analyses.

RESULTS

We screened 25 studies on predictive models for sepsis-associated acute kidney injury from a total of originally identified 2898 studies. The most commonly used machine learning algorithm is traditional logistic regression, followed by eXtreme gradient boosting. We categorized these predictive models into early identification models (60%), prognostic prediction models (32%), and subtype identification models (8%) according to their predictive purpose. The five most commonly used predictors were serum creatinine levels, lactate levels, age, blood urea nitrogen concentration, and diabetes mellitus. In addition, a single data source, insufficient assessment of clinical utility, lack of model bias assessment, and hyperparameter adjustment may be the main reasons for the low quality of the current research.

CONCLUSIONS

However, studies on the nondeath prognostic outcomes, the long-term clinical outcomes, and the subtype identification models are insufficient. Additionally, the poor quality of the research and the insufficient practicality of the model are problems that need to be addressed urgently.

摘要

背景

随着人工智能的发展,机器学习在脓毒症相关性急性肾损伤预测模型中的应用在早期识别、分级、诊断和预后判断方面取得了潜在突破。

方法

我们于 2023 年 4 月 28 日对 PubMed、Cochrane Library、Embase(Ovid)、Web of Science 和 Scopus 数据库进行了系统检索,并筛选了相关文献。然后,我们全面提取了与机器学习算法、预测因子和预测目标相关的相关数据。随后,我们对研究质量、数据汇总和分析进行了批判性评估。

结果

我们从最初确定的 2898 项研究中筛选出了 25 项关于脓毒症相关性急性肾损伤预测模型的研究。最常用的机器学习算法是传统逻辑回归,其次是极端梯度增强。根据预测目的,我们将这些预测模型分为早期识别模型(60%)、预后预测模型(32%)和亚型识别模型(8%)。最常用的五个预测因子是血清肌酐水平、乳酸水平、年龄、血尿素氮浓度和糖尿病。此外,单一数据源、临床实用性评估不足、缺乏模型偏差评估以及超参数调整可能是当前研究质量低的主要原因。

结论

然而,关于非死亡预后结局、长期临床结局和亚型识别模型的研究还不够。此外,研究质量差和模型实用性不足是需要紧急解决的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/261c/11293267/95a5d1cec0f7/IRNF_A_2380748_F0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验