Department of Molecular Biology, Princeton University, Princeton, NJ 08544.
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544.
Proc Natl Acad Sci U S A. 2021 May 18;118(20). doi: 10.1073/pnas.2023504118.
Bacterial cells can self-organize into structured communities at fluid-fluid interfaces. These soft, living materials composed of cells and extracellular matrix are called pellicles. Cells residing in pellicles garner group-level survival advantages such as increased antibiotic resistance. The dynamics of pellicle formation and, more generally, how complex morphologies arise from active biomaterials confined at interfaces are not well understood. Here, using as our model organism, a custom-built adaptive stereo microscope, fluorescence imaging, mechanical theory, and simulations, we report a fractal wrinkling morphogenesis program that differs radically from the well-known coalescence of wrinkles into folds that occurs in passive thin films at fluid-fluid interfaces. Four stages occur: growth of founding colonies, onset of primary wrinkles, development of secondary curved ridge instabilities, and finally the emergence of a cascade of finer structures with fractal-like scaling in wavelength. The time evolution of pellicle formation depends on the initial heterogeneity of the film microstructure. Changing the starting bacterial seeding density produces three variations in the sequence of morphogenic stages, which we term the bypass, crystalline, and incomplete modes. Despite these global architectural transitions, individual microcolonies remain spatially segregated, and thus, the community maintains spatial and genetic heterogeneity. Our results suggest that the memory of the original microstructure is critical in setting the morphogenic dynamics of a pellicle as an active biomaterial.
细菌细胞可以在流体-流体界面处自组织成结构化的群落。这些由细胞和细胞外基质组成的柔软、有生命的材料被称为菌膜。菌膜中的细胞获得了群体水平的生存优势,例如增加了抗生素耐药性。菌膜形成的动力学,以及更普遍地说,如何从受界面约束的活性生物材料中产生复杂的形态,目前还了解得不够清楚。在这里,我们以 作为模型生物,使用定制的自适应立体显微镜、荧光成像、力学理论和模拟,报告了一个分形皱缩形态发生程序,该程序与在流体-流体界面的被动薄膜中发生的众所周知的褶皱合并成褶皱的模式有很大的不同。有四个阶段发生:创始菌落的生长、初级皱纹的出现、次级弯曲脊不稳定性的发展,以及最终出现具有分形样波长尺度的更精细结构的级联。菌膜形成的时间演化取决于薄膜微观结构的初始非均质性。改变初始细菌接种密度会产生形态发生阶段序列的三种变化,我们将其称为旁路、结晶和不完全模式。尽管存在这些全局架构转变,但单个微菌落仍然保持空间分离,因此,群落保持空间和遗传异质性。我们的结果表明,原始微观结构的记忆对于作为活性生物材料的菌膜的形态发生动力学至关重要。