文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

组织力学在实验室和多刺鼠的创伤诱导毛囊再生中的对称性破坏。

Symmetry breaking of tissue mechanics in wound induced hair follicle regeneration of laboratory and spiny mice.

机构信息

Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.

出版信息

Nat Commun. 2021 May 10;12(1):2595. doi: 10.1038/s41467-021-22822-9.


DOI:10.1038/s41467-021-22822-9
PMID:33972536
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8110808/
Abstract

Tissue regeneration is a process that recapitulates and restores organ structure and function. Although previous studies have demonstrated wound-induced hair neogenesis (WIHN) in laboratory mice (Mus), the regeneration is limited to the center of the wound unlike those observed in African spiny (Acomys) mice. Tissue mechanics have been implicated as an integral part of tissue morphogenesis. Here, we use the WIHN model to investigate the mechanical and molecular responses of laboratory and African spiny mice, and report these models demonstrate opposing trends in spatiotemporal morphogenetic field formation with association to wound stiffness landscapes. Transcriptome analysis and K14-Cre-Twist1 transgenic mice show the Twist1 pathway acts as a mediator for both epidermal-dermal interactions and a competence factor for periodic patterning, differing from those used in development. We propose a Turing model based on tissue stiffness that supports a two-scale tissue mechanics process: (1) establishing a morphogenetic field within the wound bed (mm scale) and (2) symmetry breaking of the epidermis and forming periodically arranged hair primordia within the morphogenetic field (μm scale). Thus, we delineate distinct chemo-mechanical events in building a Turing morphogenesis-competent field during WIHN of laboratory and African spiny mice and identify its evo-devo advantages with perspectives for regenerative medicine.

摘要

组织再生是一个重现和恢复器官结构和功能的过程。尽管先前的研究已经在实验小鼠(Mus)中证明了创伤诱导的毛发新生(WIHN),但与在非洲刺鼠(Acomys)中观察到的情况不同,这种再生仅限于伤口的中心。组织力学已被认为是组织形态发生的一个组成部分。在这里,我们使用 WIHN 模型来研究实验和非洲刺鼠的机械和分子反应,并报告这些模型表现出与伤口硬度景观相关的时空形态发生场形成的相反趋势。转录组分析和 K14-Cre-Twist1 转基因小鼠表明,Twist1 途径作为表皮-真皮相互作用的介质和周期性模式形成的能力因素发挥作用,这与发育过程中使用的途径不同。我们提出了一个基于组织刚度的图灵模型,该模型支持一个两尺度组织力学过程:(1)在伤口床上建立形态发生场(毫米尺度),(2)表皮的对称破缺和在形态发生场中形成周期性排列的毛发原基(微米尺度)。因此,我们在实验室和非洲刺鼠的 WIHN 过程中描绘了构建图灵形态发生能力场的不同化学机械事件,并确定了其在再生医学方面的进化优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a13/8110808/cf538b241bcf/41467_2021_22822_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a13/8110808/c931e39dd89e/41467_2021_22822_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a13/8110808/90df4a2b487b/41467_2021_22822_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a13/8110808/d9e38ae14f5b/41467_2021_22822_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a13/8110808/de281685427a/41467_2021_22822_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a13/8110808/581821c1e7d5/41467_2021_22822_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a13/8110808/cf538b241bcf/41467_2021_22822_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a13/8110808/c931e39dd89e/41467_2021_22822_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a13/8110808/90df4a2b487b/41467_2021_22822_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a13/8110808/d9e38ae14f5b/41467_2021_22822_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a13/8110808/de281685427a/41467_2021_22822_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a13/8110808/581821c1e7d5/41467_2021_22822_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a13/8110808/cf538b241bcf/41467_2021_22822_Fig6_HTML.jpg

相似文献

[1]
Symmetry breaking of tissue mechanics in wound induced hair follicle regeneration of laboratory and spiny mice.

Nat Commun. 2021-5-10

[2]
Msx2 Supports Epidermal Competency during Wound-Induced Hair Follicle Neogenesis.

J Invest Dermatol. 2018-3-23

[3]
Comparative regenerative biology of spiny (Acomys cahirinus) and laboratory (Mus musculus) mouse skin.

Exp Dermatol. 2019-4

[4]
Approaches to Study Wound-Induced Hair Neogenesis (WIHN).

Methods Mol Biol. 2024

[5]
Wound-Induced Hair Follicle Neogenesis as a Promising Approach for Hair Regeneration.

Mol Cells. 2023-10-31

[6]
Prostaglandin D2 inhibits wound-induced hair follicle neogenesis through the receptor, Gpr44.

J Invest Dermatol. 2012-11-29

[7]
Wound-Induced Hair Neogenesis Model.

J Invest Dermatol. 2022-10

[8]
Bioinspired Strategies for Wound Regeneration.

Cold Spring Harb Perspect Biol. 2023-7-5

[9]
Wound Regeneration Deficit in Rats Correlates with Low Morphogenetic Potential and Distinct Transcriptome Profile of Epidermis.

J Invest Dermatol. 2018-1-6

[10]
Wnt signaling induces epithelial differentiation during cutaneous wound healing.

BMC Cell Biol. 2006-1-20

引用本文的文献

[1]
Unlocking longevity through the comparative biology of aging.

Nat Aging. 2025-8-28

[2]
Wnt signaling modulates mechanotransduction in the epidermis to drive hair follicle regeneration.

Sci Adv. 2025-2-21

[3]
An ear for an ear, but only if you are a deomyinid.

Proc Natl Acad Sci U S A. 2025-2-11

[4]
Spiny mice (Acomys) have evolved cellular features to support regenerative healing.

Ann N Y Acad Sci. 2025-2

[5]
Type III Collagen Regulates Matrix Architecture and Mechanosensing during Wound Healing.

J Invest Dermatol. 2025-4

[6]
Identifying Heterogeneous Micromechanical Properties of Biological Tissues via Physics-Informed Neural Networks.

Small Methods. 2025-1

[7]
How a reaction-diffusion signal can control spinal cord regeneration in axolotls: A modeling study.

iScience. 2024-6-6

[8]
Exploring the Function of Epicardial Cells Beyond the Surface.

Circ Res. 2024-7-5

[9]
Parsing patterns: Emerging roles of tissue self-organization in health and disease.

Cell. 2024-6-20

[10]
Modelling Human Hair Follicles-Lessons from Animal Models and Beyond.

Biology (Basel). 2024-4-30

本文引用的文献

[1]
Mechanics of a multilayer epithelium instruct tumour architecture and function.

Nature. 2020-9-2

[2]
Defining Epidermal Basal Cell States during Skin Homeostasis and Wound Healing Using Single-Cell Transcriptomics.

Cell Rep. 2020-3-17

[3]
UCSC Genome Browser enters 20th year.

Nucleic Acids Res. 2020-1-8

[4]
Symmetry breaking in the embryonic skin triggers directional and sequential plumage patterning.

PLoS Biol. 2019-10-2

[5]
Turing patterning with and without a global wave.

PLoS Biol. 2019-3-25

[6]
Feather arrays are patterned by interacting signalling and cell density waves.

PLoS Biol. 2019-2-21

[7]
Comparative regenerative biology of spiny (Acomys cahirinus) and laboratory (Mus musculus) mouse skin.

Exp Dermatol. 2019-4

[8]
Dermal Condensate Niche Fate Specification Occurs Prior to Formation and Is Placode Progenitor Dependent.

Dev Cell. 2018-12-27

[9]
Single-Cell Analysis Reveals a Hair Follicle Dermal Niche Molecular Differentiation Trajectory that Begins Prior to Morphogenesis.

Dev Cell. 2018-12-27

[10]
Hedgehog stimulates hair follicle neogenesis by creating inductive dermis during murine skin wound healing.

Nat Commun. 2018-11-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索