文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采用磁粒子成像技术追踪过继性 T 细胞免疫疗法。

Tracking adoptive T cell immunotherapy using magnetic particle imaging.

机构信息

J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL USA.

Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL USA.

出版信息

Nanotheranostics. 2021 Apr 27;5(4):431-444. doi: 10.7150/ntno.55165. eCollection 2021.


DOI:10.7150/ntno.55165
PMID:33972919
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8100755/
Abstract

Adoptive cellular therapy (ACT) is a potent strategy to boost the immune response against cancer. ACT is effective against blood cancers but faces challenges in treating solid tumors. A critical step for the success of ACT immunotherapy is to achieve efficient trafficking and persistence of T cells to solid tumors. Non-invasive tracking of the accumulation of adoptively transferred T cells to tumors would greatly accelerate development of more effective ACT strategies. We demonstrate the use of magnetic particle imaging (MPI) to non-invasively track ACT T cells in a mouse model of brain cancer. Magnetic labeling did not impair primary tumor-specific T cells and MPI allowed the detection of labeled T cells in the brain after intravenous or intracerebroventricular administration. These results support the use of MPI to track adoptively transferred T cells and accelerate the development of ACT treatments for brain tumors and other cancers.

摘要

过继性细胞疗法(ACT)是增强机体针对癌症免疫反应的有效策略。ACT 对血液癌症具有疗效,但在治疗实体瘤方面面临挑战。ACT 免疫疗法成功的一个关键步骤是实现 T 细胞向实体瘤的有效转运和持久性。对过继转移 T 细胞在肿瘤中积累的非侵入性跟踪,将极大地加速更有效的 ACT 策略的发展。我们证明了使用磁粒子成像(MPI)在脑癌小鼠模型中对 ACT T 细胞进行非侵入性跟踪。磁标记不会损害原发性肿瘤特异性 T 细胞,并且 MPI 允许在静脉内或脑室内给药后检测到大脑中的标记 T 细胞。这些结果支持使用 MPI 来跟踪过继转移的 T 细胞,并加速 ACT 治疗脑肿瘤和其他癌症的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a8/8100755/0934fa89e093/ntnov05p0431g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a8/8100755/820c97c1ce5c/ntnov05p0431g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a8/8100755/022262e7014f/ntnov05p0431g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a8/8100755/ca8ac4e4ef49/ntnov05p0431g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a8/8100755/1294670bb823/ntnov05p0431g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a8/8100755/98b1ee868285/ntnov05p0431g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a8/8100755/2b7ea550b422/ntnov05p0431g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a8/8100755/e661830bcf9f/ntnov05p0431g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a8/8100755/0934fa89e093/ntnov05p0431g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a8/8100755/820c97c1ce5c/ntnov05p0431g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a8/8100755/022262e7014f/ntnov05p0431g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a8/8100755/ca8ac4e4ef49/ntnov05p0431g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a8/8100755/1294670bb823/ntnov05p0431g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a8/8100755/98b1ee868285/ntnov05p0431g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a8/8100755/2b7ea550b422/ntnov05p0431g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a8/8100755/e661830bcf9f/ntnov05p0431g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a8/8100755/0934fa89e093/ntnov05p0431g008.jpg

相似文献

[1]
Tracking adoptive T cell immunotherapy using magnetic particle imaging.

Nanotheranostics. 2021

[2]
In-Vivo Detection and Tracking of T Cells in Various Organs in a Melanoma Tumor Model by 19F-Fluorine MRS/MRI.

PLoS One. 2016-10-13

[3]
nanoparticle-based T cell imaging can predict therapy response towards adoptive T cell therapy in experimental glioma.

Theranostics. 2023

[4]
High-efficiency magnetophoretic labelling of adoptively-transferred T cells for longitudinal Magnetic Particle Imaging.

Theranostics. 2024

[5]
Permissive expansion and homing of adoptively transferred T cells in tumor-bearing hosts.

Int J Cancer. 2015-1-28

[6]
Magnetic Particle Imaging Reveals that Iron-Labeled Extracellular Vesicles Accumulate in Brains of Mice with Metastases.

ACS Appl Mater Interfaces. 2024-6-19

[7]
Magnetic Cellular Backpacks for Spatial Targeting, Imaging, and Immunotherapy.

ACS Appl Bio Mater. 2024-8-19

[8]
EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma.

PLoS One. 2014-4-10

[9]
Rank aggregation of independent genetic screen results highlights new strategies for adoptive cellular transfer therapy of cancer.

Front Immunol. 2023

[10]
Magnetic Particle Imaging of Macrophages Associated with Cancer: Filling the Voids Left by Iron-Based Magnetic Resonance Imaging.

Mol Imaging Biol. 2020-8

引用本文的文献

[1]
Smart CAR-T Nanosymbionts: archetypes and proto-models.

Front Immunol. 2025-8-12

[2]
Principles and applications of magnetic nanomaterials in magnetically guided bioimaging.

Mater Today Phys. 2023-3

[3]
Receptor-Mediated SPION Labeling of CD4 T Cells for Longitudinal MRI Tracking of Distribution Following Systemic Injection in Mouse.

Nanomaterials (Basel). 2025-7-10

[4]
Spillover can limit accurate signal quantification in MPI.

Npj Imaging. 2025-5-6

[5]
Microfluidic formulation and characterization of size-tunable microparticle magnetic particle imaging tracers.

J Magn Magn Mater. 2025-6-15

[6]
Characterization and Evaluation of Commercial Tracers for X-Space Magnetic Particle Imaging.

J Magn Magn Mater. 2025-5-15

[7]
Therapeutic mRNA vaccine applications in oncology.

Mol Ther. 2025-6-4

[8]
A comprehensive analysis of the impacts of Image Resolution and Scanning Times on the quality of MPI-reconstructed images.

Sci Rep. 2025-2-14

[9]
On the partial volume effect in magnetic particle imaging.

Phys Med Biol. 2025-2-4

[10]
Advances in engineering nanoparticles for magnetic particle imaging (MPI).

Sci Adv. 2025-1-10

本文引用的文献

[1]
Trimodal Cell Tracking In Vivo: Combining Iron- and Fluorine-Based Magnetic Resonance Imaging with Magnetic Particle Imaging to Monitor the Delivery of Mesenchymal Stem Cells and the Ensuing Inflammation.

Tomography. 2019-12

[2]
Magnetic Nanoparticles in Macrophages and Cancer Cells Exhibit Different Signal Behavior on Magnetic Particle Imaging.

J Nanosci Nanotechnol. 2019-11-1

[3]
Human-sized magnetic particle imaging for brain applications.

Nat Commun. 2019-4-26

[4]
RNA-Modified T Cells Mediate Effective Delivery of Immunomodulatory Cytokines to Brain Tumors.

Mol Ther. 2018-10-17

[5]
In vivo tracking and quantification of inhaled aerosol using magnetic particle imaging towards inhaled therapeutic monitoring.

Theranostics. 2018-6-8

[6]
A perspective on a rapid and radiation-free tracer imaging modality, magnetic particle imaging, with promise for clinical translation.

Br J Radiol. 2018-11

[7]
T-cell tracking using Cerenkov and radioluminescence imaging.

J Biophotonics. 2018-10

[8]
Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking.

Curr Opin Chem Biol. 2018-5-10

[9]
Rodent Cerebral Blood Volume (CBV) changes during hypercapnia observed using Magnetic Particle Imaging (MPI) detection.

Neuroimage. 2018-5-5

[10]
The Cancer Immunotherapy Revolution.

Science. 2018-3-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索