Suppr超能文献

一种结合三轴加速度计和可拉伸应变传感器的新型自动咳嗽频率监测系统。

A novel automatic cough frequency monitoring system combining a triaxial accelerometer and a stretchable strain sensor.

机构信息

Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.

Graduate School of System Informatics, Kobe University, 1-1-Rokkodaicho. Nada-ku, Kobe, Hyogo, 657-0013, Japan.

出版信息

Sci Rep. 2021 May 11;11(1):9973. doi: 10.1038/s41598-021-89457-0.

Abstract

Objective evaluations of cough frequency are considered important for assessing the clinical state of patients with respiratory diseases. However, cough monitors with audio recordings are rarely used in clinical settings. Issues regarding privacy and background noise with audio recordings are barriers to the wide use of these monitors; to solve these problems, we developed a novel automatic cough frequency monitoring system combining a triaxial accelerator and a stretchable strain sensor. Eleven healthy adult volunteers and 10 adult patients with cough were enrolled. The participants wore two devices for 30 min for the cough measurements. An accelerator was attached to the epigastric region, and a stretchable strain sensor was worn around their neck. When the subjects coughed, these devices displayed specific waveforms. The data from all the participants were categorized into a training dataset and a test dataset. Using a variational autoencoder, a machine learning algorithm with deep learning, the components of the test dataset were automatically judged as being a "cough unit" or "non-cough unit". The sensitivity and specificity in detecting coughs were 92% and 96%, respectively. Our cough monitoring system has the potential to be widely used in clinical settings without any concerns regarding privacy or background noise.

摘要

客观评估咳嗽频率被认为是评估呼吸疾病患者临床状态的重要手段。然而,带有音频记录的咳嗽监测器在临床环境中很少使用。音频记录的隐私和背景噪音问题是这些监测器广泛使用的障碍;为了解决这些问题,我们开发了一种结合三轴加速度计和可拉伸应变传感器的新型自动咳嗽频率监测系统。纳入了 11 名健康成年志愿者和 10 名咳嗽成年患者。参与者佩戴两个设备进行 30 分钟的咳嗽测量。一个加速度计贴在腹部,一个可拉伸应变传感器戴在脖子上。当受试者咳嗽时,这些设备会显示出特定的波形。所有参与者的数据都分为训练数据集和测试数据集。使用变分自动编码器(一种具有深度学习的机器学习算法),自动判断测试数据集的成分是“咳嗽单元”还是“非咳嗽单元”。检测咳嗽的灵敏度和特异性分别为 92%和 96%。我们的咳嗽监测系统有可能在临床环境中广泛使用,而无需担心隐私或背景噪音问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b556/8113562/153699036c34/41598_2021_89457_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验