Instituto de Investigaciones Científicas y Técnicas para la Defensa (CITEDEF), Buenos Aires, 1603, Argentina.
Instituto de Invesitgaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico, Mexico.
Sci Rep. 2021 May 11;11(1):10024. doi: 10.1038/s41598-021-89517-5.
We have studied the dynamic evolution of the Covid-19 pandemic in Argentina. The marked heterogeneity in population density and the very extensive geography of the country becomes a challenge itself. Standard compartment models fail when they are implemented in the Argentina case. We extended a previous successful model to describe the geographical spread of the AH1N1 influenza epidemic of 2009 in two essential ways: we added a stochastic local mobility mechanism, and we introduced a new compartment in order to take into account the isolation of infected asymptomatic detected people. Two fundamental parameters drive the dynamics: the time elapsed between contagious and isolation of infected individuals ([Formula: see text]) and the ratio of people isolated over the total infected ones (p). The evolution is more sensitive to the [Formula: see text]parameter. The model not only reproduces the real data but also predicts the second wave before the former vanishes. This effect is intrinsic of extensive countries with heterogeneous population density and interconnection.The model presented has proven to be a reliable predictor of the effects of public policies as, for instance, the unavoidable vaccination campaigns starting at present in the world an particularly in Argentina.
我们研究了阿根廷的新冠疫情动态演变。人口密度的显著异质性和非常广阔的国家地理环境本身就是一个挑战。标准的 compartment 模型在应用于阿根廷案例时会失败。我们以两种重要方式扩展了之前成功的模型来描述 2009 年 AH1N1 流感的地理传播:我们添加了随机局部移动机制,并引入了一个新的 compartment 来考虑无症状感染者的隔离。两个基本参数驱动着动态变化:传染和隔离感染者之间的时间间隔([Formula: see text])以及被隔离的感染者与总感染者的比例(p)。演化对[Formula: see text]参数更敏感。该模型不仅再现了真实数据,而且在前者消失之前还预测了第二波疫情。这种效应是人口密度和相互连接的异质的广泛国家所固有的。所提出的模型已被证明是公共政策效果的可靠预测器,例如,目前在全球,特别是在阿根廷,不可避免的疫苗接种运动。