Njema George G, Elmelouky Abderrahmane, Meyer Edson L, Riouchi Nassima, Kibet Joshua K
Department of Chemistry Egerton University P.O Box 536 Egerton 20115 Kenya.
Laboratory Physics of Condensed Matter (LPMC) University of Chouaib Doukkali El-Jadida 24000 Morocco.
Glob Chall. 2025 Aug 19;9(9):e00276. doi: 10.1002/gch2.202500276. eCollection 2025 Sep.
Dye-sensitized solar cells (DSSC) have received significant interest in the photovoltaic technology because of their eco-friendly nature, affordability and flexibility. Here, this work presents a DSSC of the configuration; FTO/WO/N719 Dye/GO/C with performance metrics - open-circuit voltage (V) of 1.1055 V, short-circuit current density (J) of 22.23 mA cm , a fill factor (FF) of 84.65%, and a remarkable power conversion efficiency (PCE) of 20.80%. The study utilizes a wide frequency range of 10 to 10 Hz to examine charge transport dynamics and evaluate the electrochemical performance of the model cell. Impedance spectroscopy investigates both complex electrical impedance (Z*) and electric modulus (M*) to provide critical insights into ionic transport, charge recombination, ion migration and diffusion mechanisms within the cell. A model equivalent circuit is developed and theoretically validated by fitting experimental alternating current (AC) data to theoretical predictions, allowing the extraction of characteristic time constants for various processes. The results highlight that efficient ion conduction and rapid electron diffusion are essential for optimizing charge collection and minimizing recombination losses. Further, the study emphasizes the critical role of both series and shunt resistances across low- and high-frequency domains, establishing a strong correlation between time constant behavior and overall device efficiency.
染料敏化太阳能电池(DSSC)因其环保特性、经济性和灵活性而在光伏技术领域备受关注。在此,本工作展示了一种结构为FTO/WO/N719染料/氧化石墨烯/C的DSSC,其性能指标为:开路电压(V)为1.1055 V,短路电流密度(J)为22.23 mA/cm²,填充因子(FF)为84.65%,以及显著的功率转换效率(PCE)为20.80%。该研究利用10至10 Hz的宽频率范围来研究电荷传输动力学并评估模型电池的电化学性能。阻抗谱研究了复电阻抗(Z*)和电模量(M*),以深入了解电池内部的离子传输、电荷复合、离子迁移和扩散机制。通过将实验交流(AC)数据拟合到理论预测值,开发并从理论上验证了一个等效电路模型,从而能够提取各种过程的特征时间常数。结果表明,高效的离子传导和快速的电子扩散对于优化电荷收集和最小化复合损失至关重要。此外,该研究强调了低频和高频域串联电阻和并联电阻的关键作用,确立了时间常数行为与整体器件效率之间的强相关性。