National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
School of Life Sciences, University of Science and Technology of China, Hefei, China.
J Cell Biol. 2021 Jul 5;220(7). doi: 10.1083/jcb.202010096. Epub 2021 May 12.
Polarity is essential for diverse functions in many cell types. Establishing polarity requires targeting a network of specific signaling and cytoskeleton molecules to different subregions of the cell, yet the full complement of polarity regulators and how their activities are integrated over space and time to form morphologically and functionally distinct domains remain to be uncovered. Here, by using the model system Dictyostelium and exploiting the characteristic chemoattractant-stimulated translocation of polarly distributed molecules, we developed a proteomic screening approach, through which we identified a leucine-rich repeat domain-containing protein we named Leep1 as a novel polarity regulator. We combined imaging, biochemical, and phenotypic analyses to demonstrate that Leep1 localizes selectively at the leading edge of cells by binding to PIP3, where it modulates pseudopod and macropinocytic cup dynamics by negatively regulating the Scar/WAVE complex. The spatiotemporal coordination of PIP3 signaling, Leep1, and the Scar/WAVE complex provides a cellular mechanism for organizing protrusive structures at the leading edge.
极性对于许多细胞类型的多样化功能至关重要。建立极性需要将特定信号转导和细胞骨架分子网络靶向到细胞的不同亚区,但完整的极性调节剂及其活性如何在空间和时间上整合以形成形态和功能上不同的域,仍有待揭示。在这里,我们使用模型系统盘基网柄菌,并利用特征性的趋化刺激诱导极性分布分子的易位,开发了一种蛋白质组学筛选方法,通过该方法我们鉴定了一个富含亮氨酸重复结构域的蛋白质,我们将其命名为 Leep1,作为一种新的极性调节剂。我们通过成像、生化和表型分析相结合,证明 Leep1 通过与 PIP3 结合选择性地定位于细胞的前沿,在那里通过负调控 Scar/WAVE 复合物来调节伪足和巨胞饮杯的动力学。PIP3 信号、Leep1 和 Scar/WAVE 复合物的时空协调为在前沿组织突起结构提供了一种细胞机制。