Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, and Arthritis Research Canada, Richmond, British Columbia, Canada.
Massachusetts General Hospital, Boston.
Arthritis Rheumatol. 2021 Nov;73(11):2096-2104. doi: 10.1002/art.41779. Epub 2021 Sep 26.
Hyperuricemia is closely associated with insulin resistance syndrome (and its many cardiometabolic sequelae); however, whether they are causally related has long been debated. We undertook this study to investigate the potential causal nature and direction between insulin resistance and hyperuricemia, along with gout, by using bidirectional Mendelian randomization (MR) analyses.
We used genome-wide association data (n = 288,649 for serum urate [SU] concentration; n = 763,813 for gout risk; n = 153,525 for fasting insulin) to select genetic instruments for 2-sample MR analyses, using multiple MR methods to address potential pleiotropic associations. We then used individual-level, electronic medical record-linked data from the UK Biobank (n = 360,453 persons of European ancestry) to replicate our analyses via single-sample MR analysis.
Genetically determined SU levels, whether inferred from a polygenic score or strong individual loci, were not associated with fasting insulin concentrations. In contrast, genetically determined fasting insulin concentrations were positively associated with SU levels (0.37 mg/dl per log-unit increase in fasting insulin [95% confidence interval (95% CI) 0.15, 0.58]; P = 0.001). This persisted in outlier-corrected (β = 0.56 mg/dl [95% CI 0.45, 0.67]) and multivariable MR analyses adjusted for BMI (β = 0.69 mg/dl [95% CI 0.53, 0.85]) (P < 0.001 for both). Polygenic scores for fasting insulin were also positively associated with SU level among individuals in the UK Biobank (P < 0.001). Findings for gout risk were bidirectionally consistent with those for SU level.
These findings provide evidence to clarify core questions about the close association between hyperuricemia and insulin resistance syndrome: hyperinsulinemia leads to hyperuricemia but not the other way around. Reducing insulin resistance could lower the SU level and gout risk, whereas lowering the SU level (e.g., allopurinol treatment) is unlikely to mitigate insulin resistance and its cardiometabolic sequelae.
高尿酸血症与胰岛素抵抗综合征(及其多种心血管代谢后果)密切相关;然而,它们之间是否存在因果关系一直存在争议。我们通过双向孟德尔随机化(MR)分析,研究了胰岛素抵抗与高尿酸血症以及痛风之间潜在的因果关系和方向。
我们使用全基因组关联数据(用于尿酸浓度的血清 urate [SU] 分析的 n = 288649 人;用于痛风风险的 n = 763813 人;用于空腹胰岛素的 n = 153525 人)选择两样本 MR 分析的遗传工具,使用多种 MR 方法解决潜在的多效性关联。然后,我们使用英国生物库(n = 360453 名欧洲血统的个体)的个体水平、电子病历链接数据,通过单样本 MR 分析对我们的分析进行复制。
从多基因评分或强个体基因座推断的遗传决定的 SU 水平与空腹胰岛素浓度无关。相反,遗传决定的空腹胰岛素浓度与 SU 水平呈正相关(空腹胰岛素每增加一个对数单位,SU 水平增加 0.37mg/dl [95%置信区间(95%CI)0.15,0.58];P = 0.001)。在异常值校正(β = 0.56mg/dl [95%CI 0.45,0.67])和调整 BMI 的多变量 MR 分析中(β = 0.69mg/dl [95%CI 0.53,0.85])(均 P < 0.001),这种相关性仍然存在。空腹胰岛素的多基因评分也与英国生物库中 SU 水平呈正相关(P < 0.001)。痛风风险的发现与 SU 水平的发现呈双向一致。
这些发现为澄清高尿酸血症与胰岛素抵抗综合征密切关联的核心问题提供了证据:高胰岛素血症导致高尿酸血症,但反之则不然。降低胰岛素抵抗可以降低 SU 水平和痛风风险,而降低 SU 水平(例如,别嘌醇治疗)不太可能减轻胰岛素抵抗及其心血管代谢后果。