Kambhampati Patanjali
Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada.
J Phys Chem Lett. 2021 May 27;12(20):4769-4779. doi: 10.1021/acs.jpclett.1c00754. Epub 2021 May 13.
Semiconductor nanoparticles (NP) or nanocrystals (NC) have been investigated for many decades, with particular acceleration in interest upon the discovery of quantum confinement effects thereby yielding quantum dots (QD) from certain well-grown NC. The term NP is commonly used in the case of metal and wide gap semiconductor nanocrystals. The term NC is commonly used in semiconductor nanocrystals, whether covalent II-VI or ionic perovskites, that are colloidally grown. The term QD applies to select semiconductor nanocrystals for whom their size is on the order of the excitonic Bohr radius. In the case of colloidal particles on the nanometer length scale, these terms are often used carelessly and interchangeably. The words have specific meaning in relationship to specific physical effects which give rise to specific key processes that can be measured. Here, we provide a Perspective on the ways in which size confers function across different families of NP. In this way, we aim to find ways to identify their similarities and differences by providing the correct semantics for discussion of the salient processes.
几十年来,人们一直在研究半导体纳米颗粒(NP)或纳米晶体(NC),自从发现量子限制效应后,对其的研究兴趣尤其加速增长,从而从某些生长良好的NC中产生了量子点(QD)。术语NP通常用于金属和宽禁带半导体纳米晶体的情况。术语NC通常用于通过胶体生长的半导体纳米晶体,无论是共价II-VI型还是离子钙钛矿型。术语QD适用于尺寸约为激子玻尔半径的特定半导体纳米晶体。对于纳米长度尺度的胶体颗粒,这些术语经常被随意且互换地使用。这些词在与特定物理效应相关时具有特定含义,这些物理效应会引发可测量的特定关键过程。在这里,我们提供一个视角,探讨尺寸如何赋予不同NP家族功能。通过这种方式,我们旨在通过为讨论突出过程提供正确的语义来找到识别它们异同的方法。