Suppr超能文献

纳米壳量子点:超越激子玻尔半径的量子限制

Nanoshell quantum dots: Quantum confinement beyond the exciton Bohr radius.

作者信息

Cassidy James, Zamkov Mikhail

机构信息

The Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.

出版信息

J Chem Phys. 2020 Mar 21;152(11):110902. doi: 10.1063/1.5126423.

Abstract

Nanoshell quantum dots (QDs) represent a novel class of colloidal semiconductor nanocrystals (NCs), which supports tunable optoelectronic properties over the extended range of particle sizes. Traditionally, the ability to control the bandgap of colloidal semiconductor NCs is limited to small-size nanostructures, where photoinduced charges are confined by Coulomb interactions. A notorious drawback of such a restricted size range concerns the fact that assemblies of smaller nanoparticles tend to exhibit a greater density of interfacial and surface defects. This presents a potential problem for device applications of semiconductor NCs where the charge transport across nanoparticle films is important, as in the case of solar cells, field-effect transistors, and photoelectrochemical devices. The morphology of nanoshell QDs addresses this issue by enabling the quantum-confinement in the shell layer, where two-dimensional excitons can exist, regardless of the total particle size. Such a geometry exhibits one of the lowest surface-to-volume ratios among existing QD architectures and, therefore, could potentially lead to improved charge-transport and multi-exciton characteristics. The expected benefits of the nanoshell architecture were recently demonstrated by a number of reports on the CdS/CdSe nanoshell model system, showing an improved photoconductivity of solids and increased lifetime of multi-exciton populations. Along these lines, this perspective will summarize the recent work on CdS/CdSe nanoshell colloids and discuss the possibility of employing other nanoshell semiconductor combinations in light-harvesting and lasing applications.

摘要

纳米壳量子点(QDs)是一类新型的胶体半导体纳米晶体(NCs),其在较宽的粒径范围内具有可调节的光电特性。传统上,控制胶体半导体纳米晶体带隙的能力仅限于小尺寸纳米结构,在这种结构中,光生电荷受库仑相互作用的限制。这种受限尺寸范围的一个显著缺点是,较小纳米颗粒的聚集体往往表现出更高密度的界面和表面缺陷。对于半导体纳米晶体的器件应用来说,这是一个潜在问题,因为在太阳能电池、场效应晶体管和光电化学器件等情况下,电荷在纳米颗粒薄膜中的传输很重要。纳米壳量子点的形态通过在壳层实现量子限制解决了这个问题,在壳层中二维激子可以存在,而与颗粒的总体尺寸无关。这种几何结构在现有的量子点结构中具有最低的表面积与体积比之一,因此可能会带来改善的电荷传输和多激子特性。最近关于CdS/CdSe纳米壳模型系统的一些报告证明了纳米壳结构预期带来的好处,这些报告表明固体的光电导率有所提高,多激子群体的寿命有所延长。沿着这些思路,本综述将总结最近关于CdS/CdSe纳米壳胶体的工作,并讨论在光捕获和激光应用中采用其他纳米壳半导体组合的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验