Suppr超能文献

计算优化 SARS-CoV-2 受体结合基序对人 ACE2 的亲和力。

Computational optimization of the SARS-CoV-2 receptor-binding-motif affinity for human ACE2.

机构信息

Department of Physics, University of Cyprus, Nicosia, Cyprus.

出版信息

Biophys J. 2021 Jul 20;120(14):2859-2871. doi: 10.1016/j.bpj.2021.02.049. Epub 2021 May 11.

Abstract

The coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the coronavirus disease 2019 pandemic, and the closely related SARS-CoV coronavirus enter cells by binding at the human angiotensin converting enzyme 2 (hACE2). The stronger hACE2 affinity of SARS-CoV-2 has been connected with its higher infectivity. In this work, we study hACE2 complexes with the receptor-binding domains (RBDs) of the human SARS-CoV-2 and human SARS-CoV viruses, using all-atom molecular dynamics simulations and computational protein design with a physics-based energy function. The molecular dynamics simulations identify charge-modifying substitutions between the CoV-2 and CoV RBDs, which either increase or decrease the hACE2 affinity of the SARS-CoV-2 RBD. The combined effect of these mutations is small, and the relative affinity is mainly determined by substitutions at residues in contact with hACE2. Many of these findings are in line and interpret recent experiments. Our computational protein design calculations redesign positions 455, 493, 494, and 501 of the SARS-CoV-2 receptor binding motif, which contact hACE2 in the complex and are important for ACE2 recognition. Sampling is enhanced by an adaptive importance sampling Monte Carlo method. Sequences with increased affinity replace CoV-2 glutamine by a negative residue at position 493; serine by a nonpolar or aromatic residue or an asparagine at position 494; and asparagine by valine or threonine at position 501. Substitutions at positions 455 and 501 have a smaller effect on affinity. Substitutions suggested by our design are seen in viral sequences encountered in other species, including bat and pangolin. Our results might be used to identify potential virus strains with higher human infectivity and assist in the design of peptide-based or peptidomimetic compounds with the potential to inhibit SARS-CoV-2 binding at hACE2.

摘要

导致 2019 年冠状病毒病大流行的冠状病毒严重急性呼吸综合征冠状病毒 2(SARS-CoV-2),以及密切相关的 SARS-CoV 冠状病毒,通过与人血管紧张素转换酶 2(hACE2)结合进入细胞。SARS-CoV-2 与 hACE2 更强的亲和力与其更高的感染性有关。在这项工作中,我们使用全原子分子动力学模拟和基于物理能量函数的计算蛋白质设计,研究了与人 SARS-CoV-2 和 SARS-CoV 病毒的受体结合域(RBD)的 hACE2 复合物。分子动力学模拟确定了 CoV-2 和 CoV RBD 之间改变电荷的取代,这些取代增加或降低了 SARS-CoV-2 RBD 与 hACE2 的亲和力。这些突变的综合效应很小,相对亲和力主要由与 hACE2 接触的残基取代决定。许多这些发现与最近的实验一致,并进行了解释。我们的计算蛋白质设计计算重新设计了 SARS-CoV-2 受体结合基序中与复合物中 hACE2 接触的位置 455、493、494 和 501,这些位置对于 ACE2 识别很重要。适应性重要性抽样蒙特卡罗方法增强了采样。具有增加亲和力的序列在位置 493 用带负电荷的残基取代 CoV-2 谷氨酰胺;在位置 494 用非极性或芳香族残基或天冬酰胺取代丝氨酸;在位置 501 用缬氨酸或苏氨酸取代天冬酰胺。位置 455 和 501 的取代对亲和力的影响较小。在其他物种(包括蝙蝠和穿山甲)中遇到的病毒序列中观察到我们设计中建议的取代。我们的结果可用于识别具有更高人类感染性的潜在病毒株,并有助于设计具有抑制 SARS-CoV-2 与 hACE2 结合潜力的肽基或类肽化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fb5/8390902/1d8cff7b7e3d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验