Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey.
Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Mol Divers. 2022 Dec;26(6):3309-3324. doi: 10.1007/s11030-022-10392-x. Epub 2022 Feb 9.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 continues to mutate. Numerous studies have indicated that this viral mutation, particularly in the receptor-binding domain area, may increase the viral affinity for human angiotensin-converting enzyme 2 (hACE2), the receptor for viral entry into host cells, thereby increasing viral virulence and transmission. In this study, we investigated the binding affinity of SARS-CoV-2 variants (Delta plus, Iota, Kappa, Mu, Lambda, and C.1.2) on hACE2 using computational modeling with a protein-protein docking approach. The simulation results indicated that there were differences in the interactions between the RBD and hACE2, including hydrogen bonding, salt bridge interactions, non-bonded interactions, and binding free energy differences among these variants. Molecular dynamics simulations revealed that mutations in the RBD increase the stability of the hACE2-spike protein complex relative to the wild type, following the global stability trend and increasing the binding affinity. The value of binding-free energy calculated using molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) indicated that all mutations in the spike protein increased the contagiousness of SARS-CoV-2 variants. The findings of this study provide a foundation for developing effective interventions against these variants. Computational modeling elucidates that the spike protein of SARS-CoV-2 variants binds considerably stronger than the wild-type to hACE2.
严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)引起的 COVID-19 仍在不断变异。大量研究表明,这种病毒突变,特别是在受体结合域区域,可能会增加病毒对人类血管紧张素转换酶 2(hACE2)的亲和力,hACE2 是病毒进入宿主细胞的受体,从而增加病毒的毒力和传播性。在这项研究中,我们使用蛋白-蛋白对接方法的计算建模来研究 SARS-CoV-2 变体(Delta plus、Iota、Kappa、Mu、Lambda 和 C.1.2)在 hACE2 上的结合亲和力。模拟结果表明,RBD 与 hACE2 之间的相互作用存在差异,包括氢键、盐桥相互作用、非键相互作用和这些变体之间的结合自由能差异。分子动力学模拟表明,RBD 中的突变会增加 hACE2-刺突蛋白复合物的稳定性,与野生型相比,遵循整体稳定性趋势并增加结合亲和力。使用分子力学/泊松-玻尔兹曼表面面积(MM/PBSA)计算得出的结合自由能值表明,刺突蛋白的所有突变都增加了 SARS-CoV-2 变体的传染性。这项研究的结果为开发针对这些变体的有效干预措施提供了基础。计算建模表明,SARS-CoV-2 变体的刺突蛋白与 hACE2 的结合强度明显高于野生型。