Suppr超能文献

利用金属氧化物和碳纳米材料对药品和农药的毒性进行解毒和修复。

Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials.

机构信息

Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran.

School of Chemistry, Damghan University, Damghan, 36716-41167, Iran.

出版信息

Chemosphere. 2021 Jul;275:130055. doi: 10.1016/j.chemosphere.2021.130055. Epub 2021 Feb 22.

Abstract

The worldwide development of agriculture and industry has resulted in contamination of water bodies by pharmaceuticals, pesticides and other xenobiotics. Even at trace levels of few micrograms per liter in waters, these contaminants induce public health and environmental issues, thus calling for efficient removal methods such as adsorption. Recent adsorption techniques for wastewater treatment involve metal oxide compounds, e.g. FeO, ZnO, AlO and ZnO-MgO, and carbon-based materials such as graphene oxide, activated carbon, carbon nanotubes, and carbon/graphene quantum dots. Here, the small size of metal oxides and the presence various functional groups has allowed higher adsorption efficiencies. Moreover, carbon-based adsorbents exhibit unique properties such as high surface area, high porosity, easy functionalization, low price, and high surface reactivity. Here we review the cytotoxic effects of pharmaceutical drugs and pesticides in terms of human risk and ecotoxicology. We also present remediation techniques involving adsorption on metal oxides and carbon-based materials.

摘要

随着农业和工业在全球范围内的发展,水体受到了药品、农药和其他外来化合物的污染。即使在水中仅有几微克/升的痕量水平,这些污染物也会引发公共健康和环境问题,因此需要采用吸附等高效去除方法。最近用于废水处理的吸附技术涉及金属氧化物化合物,例如 FeO、ZnO、AlO 和 ZnO-MgO,以及基于碳的材料,如氧化石墨烯、活性炭、碳纳米管和碳/石墨烯量子点。在这里,金属氧化物的小尺寸和各种官能团的存在允许更高的吸附效率。此外,基于碳的吸附剂具有独特的性质,例如高比表面积、高孔隙率、易于功能化、价格低廉和高表面反应性。在这里,我们根据人类风险和生态毒理学综述了药品和农药的细胞毒性作用。我们还介绍了涉及金属氧化物和基于碳的材料吸附的修复技术。

相似文献

1
Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials.
Chemosphere. 2021 Jul;275:130055. doi: 10.1016/j.chemosphere.2021.130055. Epub 2021 Feb 22.
2
Recent advances in new generation nanocomposite materials for adsorption of pharmaceuticals from aqueous environment.
Environ Sci Pollut Res Int. 2023 Mar;30(14):39377-39417. doi: 10.1007/s11356-023-25707-0. Epub 2023 Feb 8.
3
A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives.
Chemosphere. 2022 Nov;307(Pt 1):135713. doi: 10.1016/j.chemosphere.2022.135713. Epub 2022 Jul 14.
6
Pesticides in aquatic environments and their removal by adsorption methods.
Chemosphere. 2020 Aug;253:126646. doi: 10.1016/j.chemosphere.2020.126646. Epub 2020 Apr 2.
7
Layered double hydroxides and related hybrid materials for removal of pharmaceutical pollutants from water.
J Environ Manage. 2021 Jun 15;288:112399. doi: 10.1016/j.jenvman.2021.112399. Epub 2021 Mar 26.
8
A review on adsorption of heavy metals from wastewater using carbon nanotube and graphene-based nanomaterials.
Environ Sci Pollut Res Int. 2023 Nov;30(51):110010-110046. doi: 10.1007/s11356-023-30192-6. Epub 2023 Oct 7.
9
Nanomaterials as versatile adsorbents for heavy metal ions in water: a review.
Environ Sci Pollut Res Int. 2019 Mar;26(7):6245-6278. doi: 10.1007/s11356-018-04093-y. Epub 2019 Jan 9.
10
Mitigation of environmentally-related hazardous pollutants from water matrices using nanostructured materials - A review.
Chemosphere. 2020 Aug;253:126770. doi: 10.1016/j.chemosphere.2020.126770. Epub 2020 Apr 12.

引用本文的文献

1
Strategic electrochemical oxidation of vinblastin sulfate (an anticancer drug) PVP-functionalized strontium oxide nanoparticles.
RSC Adv. 2024 Oct 2;14(43):31387-31397. doi: 10.1039/d4ra05493h. eCollection 2024 Oct 1.
5
Immobilized Nanomaterials for Environmental Applications.
Molecules. 2022 Oct 7;27(19):6659. doi: 10.3390/molecules27196659.
6
Chlorophyll fluorescence as a valuable multitool for microalgal biotechnology.
Biophys Rev. 2022 Apr 6;14(4):973-983. doi: 10.1007/s12551-022-00951-9. eCollection 2022 Aug.

本文引用的文献

1
Carbon quantum dots for the detection of antibiotics and pesticides.
J Food Drug Anal. 2020 Dec 15;28(4):539-557. doi: 10.38212/2224-6614.1269.
2
Sorption of carbendazim on activated carbons derived from rape straw and its mechanism.
RSC Adv. 2019 Dec 17;9(71):41745-41754. doi: 10.1039/c9ra06495h. eCollection 2019 Dec 13.
3
Carbon-based sustainable nanomaterials for water treatment: State-of-art and future perspectives.
Chemosphere. 2021 Jan;263:128005. doi: 10.1016/j.chemosphere.2020.128005. Epub 2020 Aug 19.
4
Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review.
Carbohydr Polym. 2021 Jan 1;251:116986. doi: 10.1016/j.carbpol.2020.116986. Epub 2020 Sep 3.
5
Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water.
Chemosphere. 2021 Feb;264(Pt 2):128466. doi: 10.1016/j.chemosphere.2020.128466. Epub 2020 Oct 5.
6
Association between type 2 diabetes and exposure to chlorinated persistent organic pollutants in Algeria: A case-control study.
Chemosphere. 2021 Feb;264(Pt 2):128596. doi: 10.1016/j.chemosphere.2020.128596. Epub 2020 Oct 9.
7
Facile filtration system to remove Diuron in aqueous solutions.
J Hazard Mater. 2021 Feb 15;404(Pt A):124163. doi: 10.1016/j.jhazmat.2020.124163. Epub 2020 Oct 5.
8
The usage of orange pulp activated carbon in the adsorption of 2,4-dichlorophenoxy acetic acid from aqueous solutions.
Int J Phytoremediation. 2021;23(4):436-444. doi: 10.1080/15226514.2020.1825325. Epub 2020 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验