Department of Computer Science, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
Department of Computer Science, Technical University Dortmund, Dortmund, Germany.
PLoS One. 2024 Feb 15;19(2):e0297105. doi: 10.1371/journal.pone.0297105. eCollection 2024.
We present a Deep Learning approach to predict 3D folding structures of RNAs from their nucleic acid sequence. Our approach combines an autoregressive Deep Generative Model, Monte Carlo Tree Search, and a score model to find and rank the most likely folding structures for a given RNA sequence. We show that RNA de novo structure prediction by deep learning is possible at atom resolution, despite the low number of experimentally measured structures that can be used for training. We confirm the predictive power of our approach by achieving competitive results in a retrospective evaluation of the RNA-Puzzles prediction challenges, without using structural contact information from multiple sequence alignments or additional data from chemical probing experiments. Blind predictions for recent RNA-Puzzle challenges under the name "Dfold" further support the competitive performance of our approach.
我们提出了一种深度学习方法,可根据 RNA 的核酸序列预测其 3D 折叠结构。我们的方法结合了自回归深度学习生成模型、蒙特卡罗树搜索和评分模型,以找到并排列给定 RNA 序列最可能的折叠结构。尽管可用于训练的实验测量结构数量较少,但我们表明,通过深度学习进行 RNA 从头预测结构是可行的,达到了原子分辨率。我们通过在 RNA-Puzzles 预测挑战的回顾性评估中取得有竞争力的结果,证明了我们方法的预测能力,而无需使用来自多序列比对的结构接触信息或化学探测实验的其他数据。我们以“Dfold”的名义对最近的 RNA-Puzzles 挑战进行的盲目预测进一步支持了我们方法的竞争性能。