Center for Technology and Behavioral Health, Geisel School of Medicine, Dartmouth College, 46 Centerra Parkway, Suite 300, Lebanon, NH, 03766, USA.
Quantitative Biomedical Sciences Program, Dartmouth College, Lebanon, NH, 03766, USA.
Sci Rep. 2021 May 13;11(1):10303. doi: 10.1038/s41598-021-89768-2.
Post-traumatic stress disorder (PTSD) is characterized by complex, heterogeneous symptomology, thus detection outside traditional clinical contexts is difficult. Fortunately, advances in mobile technology, passive sensing, and analytics offer promising avenues for research and development. The present study examined the ability to utilize Global Positioning System (GPS) data, derived passively from a smartphone across seven days, to detect PTSD diagnostic status among a cohort (N = 185) of high-risk, previously traumatized women. Using daily time spent away and maximum distance traveled from home as a basis for model feature engineering, the results suggested that diagnostic group status can be predicted out-of-fold with high performance (AUC = 0.816, balanced sensitivity = 0.743, balanced specificity = 0.8, balanced accuracy = 0.771). Results further implicate the potential utility of GPS information as a digital biomarker of the PTSD behavioral repertoire. Future PTSD research will benefit from application of GPS data within larger, more diverse populations.
创伤后应激障碍(PTSD)的症状表现复杂且多样,因此很难在传统临床环境之外进行检测。幸运的是,移动技术、被动感测和分析技术的进步为研究和开发提供了有前途的途径。本研究考察了利用全球定位系统(GPS)数据的能力,该数据是从智能手机在七天内被动获取的,以检测高危、先前受过创伤的女性队列(N=185)中的 PTSD 诊断状态。使用每天离开家和离家最远的时间作为模型特征工程的基础,结果表明,可以使用高绩效(AUC=0.816、平衡灵敏度=0.743、平衡特异性=0.8、平衡准确性=0.771)对诊断组状态进行折叠外预测。结果进一步表明,GPS 信息作为 PTSD 行为谱的数字生物标志物具有潜在的效用。未来的 PTSD 研究将受益于在更大、更多样化的人群中应用 GPS 数据。