Suppr超能文献

STDD:基于被动感知的短期抑郁检测。

STDD: Short-Term Depression Detection with Passive Sensing.

机构信息

Department of Computer Science and Information Engineering, Inha University, Incheon 22212, Korea.

Department of Psychology, Yonsei University, Seoul 03722, Korea.

出版信息

Sensors (Basel). 2020 Mar 4;20(5):1396. doi: 10.3390/s20051396.

Abstract

It has recently been reported that identifying the depression severity of a person requires involvement of mental health professionals who use traditional methods like interviews and self-reports, which results in spending time and money. In this work we made solid contributions on short-term depression detection using every-day mobile devices. To improve the accuracy of depression detection, we extracted five factors influencing depression (symptom clusters) from the DSM-5 (Diagnostic and Statistical Manual of Mental Disorders), namely, , , , , and and extracted features related to each symptom cluster from mobile devices' sensors. We conducted an experiment, where we recruited 20 participants from four different depression groups based on PHQ-9 (the Patient Health Questionnaire-9, the 9-item depression module from the full PHQ), which are , , , and and built a machine learning model for automatic classification of depression category in a short period of time. To achieve the aim of short-term depression classification, we developed Short-Term Depression Detector (STDD), a framework that consisted of a smartphone and a wearable device that constantly reported the metrics (sensor data and self-reports) to perform depression group classification. The result of this pilot study revealed high correlations between participants` Ecological Momentary Assessment (EMA) self-reports and passive sensing (sensor data) in physical activity, mood, and sleep levels; STDD demonstrated the feasibility of group classification with an accuracy of 96.00% (standard deviation (SD) = 2.76).

摘要

最近有报道称,确定一个人的抑郁严重程度需要心理健康专业人员的参与,他们使用传统的方法,如访谈和自我报告,这导致时间和金钱的花费。在这项工作中,我们使用日常移动设备在短期抑郁检测方面做出了扎实的贡献。为了提高抑郁检测的准确性,我们从 DSM-5(精神障碍诊断和统计手册)中提取了五个影响抑郁的因素(症状群),即、、、、和,并且从移动设备的传感器中提取了与每个症状群相关的特征。我们进行了一项实验,招募了 20 名参与者,他们来自 PHQ-9(患者健康问卷-9,完整 PHQ 中的 9 项抑郁模块)中的四个不同的抑郁组,即、、、和,建立了一个用于自动分类短期抑郁类别的机器学习模型。为了实现短期抑郁分类的目标,我们开发了短期抑郁检测(STDD),这是一个由智能手机和可穿戴设备组成的框架,它们不断报告指标(传感器数据和自我报告)以进行抑郁组分类。这项初步研究的结果显示,参与者的生态瞬时评估(EMA)自我报告与身体活动、情绪和睡眠水平的被动感知(传感器数据)之间存在高度相关性;STDD 证明了群体分类的可行性,准确率为 96.00%(标准差(SD)=2.76)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/7085564/8586a6b95ec8/sensors-20-01396-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验