Department of Public PE Education, Luoyang Normal University, Luoyang, Henan 471934, China.
Comput Intell Neurosci. 2021 Aug 24;2021:3155357. doi: 10.1155/2021/3155357. eCollection 2021.
In the system design of table tennis robot, the important influencing factors of automatic detection of technical and tactical indicators for table tennis are table tennis rotation state, trajectory, and rebound force. But the general prediction algorithm cannot process the time series data and give the corresponding rotation state. Therefore, this paper studies the automatic detection method of technical and tactical indicators for table tennis based on the trajectory prediction using the compensation fuzzy neural network. In this paper, the compensation fuzzy neural network algorithm which combines the compensation fuzzy algorithm and recurrent neural network is selected to construct the automatic detection of technical and tactical indicators for table tennis. The experimental results show that the convergence time of the compensation fuzzy neural network is shorter, the training time is shortened, and the prediction accuracy is improved. At the same time, in terms of performance testing, the model can accurately distinguish the influence of table tennis rotation state and rebound on table tennis motion estimation, so as to improve the accuracy of motion trajectory prediction. In addition, the accuracy of trajectory prediction will be improved with the increase of input data. When the number of data reaches 30, the trajectory prediction error is within the actual acceptable error range.
在乒乓球机器人系统设计中,乒乓球旋转状态、轨迹和反作用力是自动检测乒乓球技术战术指标的重要影响因素。但是,一般的预测算法无法处理时间序列数据,无法给出相应的旋转状态。因此,本文基于轨迹预测,利用补偿模糊神经网络研究了乒乓球技术战术指标的自动检测方法。本文选择了结合补偿模糊算法和递归神经网络的补偿模糊神经网络算法来构建乒乓球技术战术指标的自动检测。实验结果表明,补偿模糊神经网络的收敛时间更短,训练时间缩短,预测精度提高。同时,在性能测试方面,该模型可以准确区分乒乓球旋转状态和反弹对乒乓球运动估计的影响,从而提高运动轨迹预测的准确性。此外,随着输入数据的增加,轨迹预测的准确性会提高。当数据数量达到 30 时,轨迹预测误差在实际可接受的误差范围内。