Suppr超能文献

描述重度饮酒者饮酒模式的特征:利用酒精生物传感器数据进行的聚类分析。

Characterising patterns of alcohol use among heavy drinkers: A cluster analysis utilising alcohol biosensor data.

机构信息

Department of Behavioral and Social Sciences, Center for Alcohol and Addiction Studies, Brown University School of Public Health, Providence, USA.

Biostatistics, Center for Alcohol and Addiction Studies, Brown University School of Public Health, Providence, USA.

出版信息

Drug Alcohol Rev. 2021 Nov;40(7):1155-1164. doi: 10.1111/dar.13306. Epub 2021 May 14.

Abstract

INTRODUCTION

Previous research has predominately relied on person-level or single characteristics of drinking episodes to characterise patterns of drinking that may confer risk. This research often relies on self-report measures. Advancements in wearable alcohol biosensors provide a multi-faceted objective measure of drinking. The current study aimed to characterise drinking episodes using data derived from a wearable alcohol biosensor.

METHODS

Participants (n = 45) were adult heavy drinkers who wore the Secure Continuous Remote Alcohol Monitoring (SCRAM) bracelet and reported on their drinking behaviours. Cluster analysis was used to evaluate unique combinations of alcohol episode characteristics. Associations between clusters and self-reported person and event-level factors were also examined in univariable and multivariable models.

RESULTS

Results suggested three unique clusters: Cluster 1 (most common, slowest rate of rise to and decline from peak), Cluster 2 (highest peak transdermal alcohol concentration and area under the curve) and Cluster 3 (fastest rate of decline from peak). Univariable analyses distinguished Cluster 1 as having fewer self-reported drinks and fewer episodes that occurred on weekends relative to Cluster 2. The effect for number of drinks remained in multivariable analyses.

DISCUSSION AND CONCLUSIONS

This is the first study to characterise drinking patterns at the event-level using objective data. Results suggest that it is possible to distinguish drinking episodes based on several characteristics derived from wearable alcohol biosensors. This examination lays the groundwork for future studies to characterise patterns of drinking and their association with consequences of drinking behaviour.

摘要

简介

先前的研究主要依赖于个体层面或单次饮酒事件的单一特征来描述可能带来风险的饮酒模式。这些研究往往依赖于自我报告的测量方法。可穿戴酒精生物传感器的进步为饮酒行为提供了多方面的客观测量。本研究旨在使用可穿戴酒精生物传感器得出的数据来描述饮酒事件。

方法

参与者(n=45)为成年重度饮酒者,他们佩戴 Secure Continuous Remote Alcohol Monitoring(SCRAM)手镯并报告他们的饮酒行为。聚类分析用于评估酒精事件特征的独特组合。在单变量和多变量模型中,还检查了聚类与自我报告的个体和事件水平因素之间的关联。

结果

结果表明存在三个独特的聚类:聚类 1(最常见,从峰值上升和下降的速度最慢)、聚类 2(最高的经皮酒精浓度峰值和曲线下面积)和聚类 3(从峰值下降的速度最快)。单变量分析将聚类 1 与聚类 2 区分开来,前者报告的饮酒量较少,且周末发生的饮酒事件较少。在多变量分析中,饮酒量的影响仍然存在。

讨论和结论

这是第一项使用客观数据在事件层面描述饮酒模式的研究。结果表明,基于可穿戴酒精生物传感器得出的几个特征,有可能区分饮酒事件。这项研究为未来的研究奠定了基础,以描述饮酒模式及其与饮酒行为后果的关联。

相似文献

8
Patterns of alcohol consumption and alcohol-impaired driving in the United States.美国的饮酒模式与酒后驾车情况
Alcohol Clin Exp Res. 2008 Apr;32(4):639-44. doi: 10.1111/j.1530-0277.2008.00622.x. Epub 2008 Mar 13.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验