Department of Chemistry, Graduate School of Science, Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan.
Institute for Integrated Cell-Material Sciences, Kyoto University, Japan.
Angew Chem Int Ed Engl. 2021 Sep 6;60(37):20342-20349. doi: 10.1002/anie.202105425. Epub 2021 Aug 7.
The extracellular matrix (ECM) in which the cells reside provides a dynamic and reversible environment. Spatiotemporal cues are essential when cells are undergoing morphogenesis, repair and differentiation. Emulation of such an intricate system with reversible presentation of nanoscale cues can help us better understand cellular processes and can allow the precise manipulation of cell function in vitro. Herein, we formulated a photoswitchable DNA mechanical nanostructure containing azobenzene moieties and dynamically regulated the spatial distance between adhesion peptides using a photoswitchable DNA polymer with photoirradiation. We found that the DNA polymer reversibly forms two different structures, a relaxed linear and shrunken compact form, observed by AFM. Using the mechanical properties of this DNA polymer, UV and visible light irradiation induced a significant morphology change of the cells between a round shape and spindle shape, thus providing a tool to decipher the language of the ECM better.
细胞所在的细胞外基质 (ECM) 提供了一个动态且可逆的环境。当细胞经历形态发生、修复和分化时,时空线索是必不可少的。通过可逆呈现纳米级线索来模拟这样一个复杂的系统,可以帮助我们更好地理解细胞过程,并允许在体外精确操纵细胞功能。在此,我们设计了一种光致变色 DNA 机械纳米结构,其中包含偶氮苯部分,并使用光致变色 DNA 聚合物通过光照射来动态调节粘附肽之间的空间距离。我们发现 DNA 聚合物通过 AFM 观察到可在松弛的线性和收缩的紧凑形式之间可逆地形成两种不同的结构。利用该 DNA 聚合物的机械性能,UV 和可见光照射可诱导细胞的形态从圆形到梭形发生显著变化,从而为更好地解读 ECM 的语言提供了一种工具。