Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
Oxford Suzhou Centre for Advanced Research, 388 Ruoshui Road, Suzhou Industrial Park, Jiangsu, 215123, P.R. China.
Microb Biotechnol. 2021 Jul;14(4):1580-1593. doi: 10.1111/1751-7915.13823. Epub 2021 May 16.
The ability to directly modify native and established biofilms has enormous potential in understanding microbial ecology and application of biofilm in 'real-world' systems. However, efficient genetic transformation of established biofilms at any scale remains challenging. In this study, we applied an ultrasound-mediated DNA delivery (UDD) technique to introduce plasmid to established non-competent biofilms in situ. Two different plasmids containing genes coding for superfolder green fluorescent protein (sfGFP) and the flavin synthesis pathway were introduced into established bacterial biofilms in microfluidic flow (transformation efficiency of 3.9 ± 0.3 × 10 cells in biofilm) and microbial fuel cells (MFCs), respectively, both employing UDD. Gene expression and functional effects of genetically modified bacterial biofilms were observed, where some cells in UDD-treated Pseudomonas putida UWC1 biofilms expressed sfGFP in flow cells and UDD-treated Shewanella oneidensis MR-1 biofilms generated significantly (P < 0.05) greater (61%) bioelectricity production (21.9 ± 1.2 µA cm ) in MFC than a wild-type control group (~ 13.6 ± 1.6 µA cm ). The effects of UDD were amplified in subsequent growth under selection pressure due to antibiotic resistance and metabolism enhancement. UDD-induced gene transfer on biofilms grown in both microbial flow cells and MFC systems was successfully demonstrated, with working volumes of 0.16 cm and 300 cm , respectively, demonstrating a significant scale-up in operating volume. This is the first study to report on a potentially scalable direct genetic engineering method for established non-competent biofilms, which can be exploited in enhancing their capability towards environmental, industrial and medical applications.
直接修饰天然和已建立的生物膜的能力在理解微生物生态学和生物膜在“真实世界”系统中的应用方面具有巨大的潜力。然而,在任何规模上高效地对已建立的生物膜进行遗传转化仍然具有挑战性。在这项研究中,我们应用超声介导的 DNA 传递 (UDD) 技术原位引入质粒到已建立的非感受态生物膜中。两个不同的质粒,分别包含编码超折叠绿色荧光蛋白 (sfGFP) 和黄素合成途径的基因,被引入微流控流动中的已建立的细菌生物膜(生物膜中转化效率为 3.9 ± 0.3 × 10 细胞)和微生物燃料电池 (MFC) 中,均采用 UDD。观察到遗传修饰的细菌生物膜的基因表达和功能效应,其中在流动细胞中,UDD 处理的假单胞菌 UWC1 生物膜中的一些细胞表达 sfGFP,而在 UDD 处理的希瓦氏菌 oneidensis MR-1 生物膜中产生的生物电能显著(P < 0.05)更高(21.9 ± 1.2 µA cm -2 )比野生型对照组(~ 13.6 ± 1.6 µA cm -2 )。由于抗生素抗性和代谢增强,UDD 诱导的基因转移在随后的选择压力下生长中得到了放大。在微生物流动细胞和 MFC 系统中生长的生物膜上成功地证明了 UDD 诱导的基因转移,工作体积分别为 0.16 cm 和 300 cm 3 ,分别在操作体积上实现了显著的放大。这是第一项报道针对已建立的非感受态生物膜的潜在可扩展的直接遗传工程方法的研究,该方法可用于增强其在环境、工业和医学应用方面的能力。