Suppr超能文献

一种基于TabNet和机器学习模型的集成学习方法用于教育考试中的作弊检测。

An Ensemble Learning Approach Based on TabNet and Machine Learning Models for Cheating Detection in Educational Tests.

作者信息

Zhen Yang, Zhu Xiaoyan

机构信息

Anhui Technical College of Industry and Economy, Hefei, China.

出版信息

Educ Psychol Meas. 2024 Aug;84(4):780-809. doi: 10.1177/00131644231191298. Epub 2023 Aug 21.

Abstract

The pervasive issue of cheating in educational tests has emerged as a paramount concern within the realm of education, prompting scholars to explore diverse methodologies for identifying potential transgressors. While machine learning models have been extensively investigated for this purpose, the untapped potential of TabNet, an intricate deep neural network model, remains uncharted territory. Within this study, a comprehensive evaluation and comparison of 12 base models (naive Bayes, linear discriminant analysis, Gaussian process, support vector machine, decision tree, random forest, Extreme Gradient Boosting (XGBoost), AdaBoost, logistic regression, -nearest neighbors, multilayer perceptron, and TabNet) was undertaken to scrutinize their predictive capabilities. The area under the receiver operating characteristic curve (AUC) was employed as the performance metric for evaluation. Impressively, the findings underscored the supremacy of TabNet (AUC = 0.85) over its counterparts, signifying the profound aptitude of deep neural network models in tackling tabular tasks, such as the detection of academic dishonesty. Encouraged by these outcomes, we proceeded to synergistically amalgamate the two most efficacious models, TabNet (AUC = 0.85) and AdaBoost (AUC = 0.81), resulting in the creation of an ensemble model christened TabNet-AdaBoost (AUC = 0.92). The emergence of this novel hybrid approach exhibited considerable potential in research endeavors within this domain. Importantly, our investigation has unveiled fresh insights into the utilization of deep neural network models for the purpose of identifying cheating in educational tests.

摘要

教育考试中普遍存在的作弊问题已成为教育领域的首要关注点,促使学者们探索各种方法来识别潜在的违规者。虽然机器学习模型已为此目的进行了广泛研究,但复杂的深度神经网络模型TabNet的未开发潜力仍未被探索。在本研究中,对12个基础模型(朴素贝叶斯、线性判别分析、高斯过程、支持向量机、决策树、随机森林、极端梯度提升(XGBoost)、AdaBoost、逻辑回归、K近邻、多层感知器和TabNet)进行了全面评估和比较,以审查它们的预测能力。采用接收器操作特征曲线(AUC)下的面积作为评估的性能指标。令人印象深刻的是,研究结果强调了TabNet(AUC = 0.85)相对于其他模型的优势,这表明深度神经网络模型在处理表格任务(如检测学术不端行为)方面具有深厚的能力。受这些结果的鼓舞,我们继续将两个最有效的模型TabNet(AUC = 0.85)和AdaBoost(AUC = 0.81)进行协同融合,创建了一个名为TabNet - AdaBoost的集成模型(AUC = 0.92)。这种新颖的混合方法在该领域的研究工作中展现出了巨大的潜力。重要的是,我们的研究揭示了关于利用深度神经网络模型识别教育考试作弊行为的新见解。

相似文献

本文引用的文献

4
Machine learning based approach to exam cheating detection.基于机器学习的考试作弊检测方法。
PLoS One. 2021 Aug 4;16(8):e0254340. doi: 10.1371/journal.pone.0254340. eCollection 2021.
7
Detecting Test Tampering Using Item Response Theory.使用项目反应理论检测考试作弊行为。
Educ Psychol Meas. 2015 Dec;75(6):931-953. doi: 10.1177/0013164414568716. Epub 2015 Jan 23.
8
Decision tree methods: applications for classification and prediction.决策树方法:分类与预测应用
Shanghai Arch Psychiatry. 2015 Apr 25;27(2):130-5. doi: 10.11919/j.issn.1002-0829.215044.
10
Review: a gentle introduction to imputation of missing values.综述:缺失值插补的简要介绍
J Clin Epidemiol. 2006 Oct;59(10):1087-91. doi: 10.1016/j.jclinepi.2006.01.014. Epub 2006 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验