Suppr超能文献

用于大规模评估中作弊检测的堆叠集成机器学习算法探索

Exploration of the Stacking Ensemble Machine Learning Algorithm for Cheating Detection in Large-Scale Assessment.

作者信息

Zhou Todd, Jiao Hong

机构信息

Winston Churchill High School, Potomac, MD, USA.

University of Maryland, College Park, USA.

出版信息

Educ Psychol Meas. 2023 Aug;83(4):831-854. doi: 10.1177/00131644221117193. Epub 2022 Aug 13.

Abstract

Cheating detection in large-scale assessment received considerable attention in the extant literature. However, none of the previous studies in this line of research investigated the stacking ensemble machine learning algorithm for cheating detection. Furthermore, no study addressed the issue of class imbalance using resampling. This study explored the application of the stacking ensemble machine learning algorithm to analyze the item response, response time, and augmented data of test-takers to detect cheating behaviors. The performance of the stacking method was compared with that of two other ensemble methods (bagging and boosting) as well as six base non-ensemble machine learning algorithms. Issues related to class imbalance and input features were addressed. The study results indicated that stacking, resampling, and feature sets including augmented summary data generally performed better than its counterparts in cheating detection. Compared with other competing machine learning algorithms investigated in this study, the meta-model from stacking using discriminant analysis based on the top two base models-Gradient Boosting and Random Forest-generally performed the best when item responses and the augmented summary statistics were used as the input features with an under-sampling ratio of 10:1 among all the study conditions.

摘要

大规模评估中的作弊检测在现有文献中受到了相当多的关注。然而,该研究领域之前的研究均未探讨用于作弊检测的堆叠集成机器学习算法。此外,也没有研究使用重采样来解决类别不平衡问题。本研究探索了堆叠集成机器学习算法在分析考生的项目反应、反应时间和增强数据以检测作弊行为方面的应用。将堆叠方法的性能与其他两种集成方法(装袋法和提升法)以及六种基本非集成机器学习算法的性能进行了比较。解决了与类别不平衡和输入特征相关的问题。研究结果表明,在作弊检测中,堆叠、重采样以及包括增强汇总数据在内的特征集通常比其他方法表现更好。与本研究中调查的其他竞争机器学习算法相比,在所有研究条件下,当使用项目反应和增强汇总统计量作为输入特征且欠采样率为10:1时,基于前两个基本模型——梯度提升和随机森林——使用判别分析的堆叠元模型通常表现最佳。

相似文献

1
Exploration of the Stacking Ensemble Machine Learning Algorithm for Cheating Detection in Large-Scale Assessment.
Educ Psychol Meas. 2023 Aug;83(4):831-854. doi: 10.1177/00131644221117193. Epub 2022 Aug 13.
3
An efficient ensemble based machine learning approach for predicting Chronic Kidney Disease.
Curr Med Imaging. 2023 May 8. doi: 10.2174/1573405620666230508104538.
5
A GA-stacking ensemble approach for forecasting energy consumption in a smart household: A comparative study of ensemble methods.
J Environ Manage. 2024 Jul;364:121264. doi: 10.1016/j.jenvman.2024.121264. Epub 2024 Jun 12.
10
An Ensemble Learning Approach Based on TabNet and Machine Learning Models for Cheating Detection in Educational Tests.
Educ Psychol Meas. 2024 Aug;84(4):780-809. doi: 10.1177/00131644231191298. Epub 2023 Aug 21.

引用本文的文献

1
Identifying major depressive disorder among US adults living alone using stacked ensemble machine learning algorithms.
Front Public Health. 2025 Feb 21;13:1472050. doi: 10.3389/fpubh.2025.1472050. eCollection 2025.
2
An Ensemble Learning Approach Based on TabNet and Machine Learning Models for Cheating Detection in Educational Tests.
Educ Psychol Meas. 2024 Aug;84(4):780-809. doi: 10.1177/00131644231191298. Epub 2023 Aug 21.
3
Multimodal Data Fusion to Detect Preknowledge Test-Taking Behavior Using Machine Learning.
Educ Psychol Meas. 2024 Aug;84(4):753-779. doi: 10.1177/00131644231193625. Epub 2023 Sep 19.
5
ESG2PreEM: Automated ESG grade assessment framework using pre-trained ensemble models.
Heliyon. 2024 Feb 14;10(4):e26404. doi: 10.1016/j.heliyon.2024.e26404. eCollection 2024 Feb 29.
6
7
Diurnal urban heat risk assessment using extreme air temperatures and real-time population data in Seoul.
iScience. 2023 Oct 4;26(11):108123. doi: 10.1016/j.isci.2023.108123. eCollection 2023 Nov 17.
9
Detecting Cheating in Large-Scale Assessment: The Transfer of Detectors to New Tests.
Educ Psychol Meas. 2023 Oct;83(5):1033-1058. doi: 10.1177/00131644221132723. Epub 2022 Nov 4.

本文引用的文献

2
Detecting Examinees With Item Preknowledge in Large-Scale Testing Using Extreme Gradient Boosting (XGBoost).
Educ Psychol Meas. 2019 Oct;79(5):931-961. doi: 10.1177/0013164419839439. Epub 2019 Apr 2.
3
Scaling tree-based automated machine learning to biomedical big data with a feature set selector.
Bioinformatics. 2020 Jan 1;36(1):250-256. doi: 10.1093/bioinformatics/btz470.
4
Using Deterministic, Gated Item Response Theory Model to detect test cheating due to item compromise.
Psychometrika. 2013 Jul;78(3):481-97. doi: 10.1007/s11336-012-9311-3. Epub 2013 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验