Safarnejad Lida, Xu Qian, Ge Yaorong, Krishnan Siddharth, Bagarvathi Arunkumar, Chen Shi
Departamento de software y sistemas de información, Universidad de Carolina del Norte Estados Unidos de América Departamento de software y sistemas de información, Universidad de Carolina del Norte, Estados Unidos de América.
Facultad de Comunicación, Universidad de Elon Estados Unidos de América Facultad de Comunicación, Universidad de Elon, Estados Unidos de América.
Rev Panam Salud Publica. 2021 May 12;45:e61. doi: 10.26633/RPSP.2021.61. eCollection 2021.
To provide a comprehensive workflow to identify top influential health misinformation about Zika on Twitter in 2016, reconstruct information dissemination networks of retweeting, contrast mis- from real information on various metrics, and investigate how Zika misinformation proliferated on social media during the Zika epidemic.
We systematically reviewed the top 5000 English-language Zika tweets, established an evidence-based definition of "misinformation," identified misinformation tweets, and matched a comparable group of real-information tweets. We developed an algorithm to reconstruct retweeting networks for 266 misinformation and 458 comparable real-information tweets. We computed and compared 9 network metrics characterizing network structure across various levels between the 2 groups.
There were statistically significant differences in all 9 network metrics between real and misinformation groups. Misinformation network structures were generally more sophisticated than those in the real-information group. There was substantial within-group variability, too.
Dissemination networks of Zika misinformation differed substantially from real information on Twitter, indicating that misinformation utilized distinct dissemination mechanisms from real information. Our study will lead to a more holistic understanding of health misinformation challenges on social media.
提供一个全面的工作流程,以识别2016年推特上关于寨卡病毒最具影响力的健康错误信息,重建转发的信息传播网络,在各种指标上对比错误信息与真实信息,并调查在寨卡疫情期间寨卡病毒错误信息是如何在社交媒体上扩散的。
我们系统地审查了5000条关于寨卡病毒的英文推文,建立了基于证据的“错误信息”定义,识别出错误信息推文,并匹配了一组可比的真实信息推文。我们开发了一种算法,用于重建266条错误信息推文和458条可比真实信息推文的转发网络。我们计算并比较了表征两组不同层次网络结构的9个网络指标。
真实信息组和错误信息组在所有9个网络指标上均存在统计学显著差异。错误信息网络结构通常比真实信息组的更为复杂。组内也存在很大的变异性。
推特上寨卡病毒错误信息的传播网络与真实信息有很大不同,表明错误信息利用了与真实信息不同的传播机制。我们的研究将有助于更全面地理解社交媒体上的健康错误信息挑战。