Suppr超能文献

在石墨烯包覆的聚对苯二甲酸乙二醇酯双层柔性衬底上水热生长的掺银氧化锌的微观结构与性能

Microstructure and Properties of Ag-Doped ZnO Grown Hydrothermally on a Graphene-Coated Polyethylene Terephthalate Bilayer Flexible Substrate.

作者信息

Ai Taotao, Fan Yuanyuan, Wang Huhu, Zou Xiangyu, Bao Weiwei, Deng Zhifeng, Zhao Zhongguo, Li Miao, Kou Lingjiang, Feng Xiaoming, Li Mei

机构信息

National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong, China.

Shaanxi Province Engineering and Technology Research Center of Resource Utilization of Metallurgical Slag, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong, China.

出版信息

Front Chem. 2021 Apr 30;9:661127. doi: 10.3389/fchem.2021.661127. eCollection 2021.

Abstract

Ag-doped ZnO nanorods growth on a PET-graphene substrate (Ag-ZnO/PET-GR) with different Ag-doped content were synthesized by low-temperature ion-sputtering-assisted hydrothermal synthesis method. The phase composition, morphologies of ZnO, and electrical properties were analyzed. Ag-doping affects the initially perpendicular growth of ZnO nanorods, resulting in oblique growth of ZnO nanorods becoming more obvious as the Ag-doped content increases, and the diameter of the nanorods decreasing gradually. The width of the forbidden band gap of the ZnO films decreases with increasing Ag-doped content. For the Ag-ZnO/PET-GR composite structure, the Ag-ZnO thin film with 5% Ag-doped content has the largest carrier concentration (8.1 × 10 cm), the highest mobility (67 cm · V · s), a small resistivity (0.09 Ω·cm), and impressive electrical properties.

摘要

采用低温离子溅射辅助水热合成法,在具有不同银掺杂含量的聚对苯二甲酸乙二酯-石墨烯基底(Ag-ZnO/PET-GR)上合成了银掺杂的氧化锌纳米棒。分析了氧化锌的相组成、形貌及电学性能。银掺杂影响氧化锌纳米棒最初的垂直生长,随着银掺杂含量的增加,氧化锌纳米棒的倾斜生长变得更加明显,且纳米棒的直径逐渐减小。氧化锌薄膜的禁带宽度随着银掺杂含量的增加而减小。对于Ag-ZnO/PET-GR复合结构,银掺杂含量为5%的Ag-ZnO薄膜具有最大的载流子浓度(8.1×10 cm)、最高的迁移率(67 cm·V·s)、较小的电阻率(0.09 Ω·cm)以及令人印象深刻的电学性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78d0/8120319/6b6c7de2d4ad/fchem-09-661127-g0003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验