Li Hao, Liao Zhiyao, Yang Zhen, Gao Cangjian, Fu Liwei, Li Pinxue, Zhao Tianyuan, Cao Fuyang, Chen Wei, Yuan Zhiguo, Sui Xiang, Liu Shuyun, Guo Quanyi
Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.
School of Medicine, Nankai University, Tianjin, China.
Front Bioeng Biotechnol. 2021 Apr 30;9:662381. doi: 10.3389/fbioe.2021.662381. eCollection 2021.
Meniscus tissue engineering (MTE) aims to fabricate ideal scaffolds to stimulate the microenvironment for recreating the damaged meniscal tissue. Indeed, favorable mechanical properties, suitable biocompatibility, and inherent chondrogenic capability are crucial in MTE. In this study, we present a composite scaffold by 3D printing a poly(ε-caprolactone) (PCL) scaffold as backbone, followed by injection with the meniscus extracellular matrix (MECM), and modification with kartogenin (KGN)-loaded poly(lactic-co-glycolic) acid (PLGA) microsphere (μS), which serves as a drug delivery system. Therefore, we propose a plan to improve meniscus regeneration via KGN released from the 3D porous PCL/MECM scaffold. The final results showed that the hydrophilicity and bioactivity of the resulting PCL/MECM scaffold were remarkably enhanced. synovium-derived mesenchymal stem cells (SMSCs) experiments suggested that introducing MECM components helped cell adhesion and proliferation and maintained promising ability to induce cell migration. Moreover, KGN-incorporating PLGA microspheres, which were loaded on scaffolds, showed a prolonged release profile and improved the chondrogenic differentiation of SMSCs during the 14-day culture. Particularly, the PCL/MECM-KGN μS seeded by SMSCs showed the highest secretion of total collagen and aggrecan. More importantly, the synergistic effect of the MECM and sustained release of KGN can endow the PCL/MECM-KGN μS scaffolds with not only excellent cell affinity and cell vitality preservation but also chondrogenic activity. Thus, the PCL/MECM-KGN μS scaffolds are expected to have good application prospects in the field of MTE.
半月板组织工程(MTE)旨在制造理想的支架,以刺激微环境来重建受损的半月板组织。事实上,良好的机械性能、合适的生物相容性和固有的软骨生成能力在半月板组织工程中至关重要。在本研究中,我们通过3D打印聚(ε-己内酯)(PCL)支架作为骨架,随后注入半月板细胞外基质(MECM),并用负载了软骨素(KGN)的聚乳酸-羟基乙酸共聚物(PLGA)微球(μS)进行修饰,构建了一种复合支架,该微球作为药物递送系统。因此,我们提出了一个通过从3D多孔PCL/MECM支架释放KGN来改善半月板再生的方案。最终结果表明,所得PCL/MECM支架的亲水性和生物活性显著增强。滑膜来源的间充质干细胞(SMSCs)实验表明,引入MECM成分有助于细胞黏附和增殖,并保持了良好的诱导细胞迁移的能力。此外,负载在支架上的含KGN的PLGA微球显示出缓释特性,并在14天的培养过程中改善了SMSCs的软骨分化。特别是,接种了SMSCs的PCL/MECM-KGN μS显示出总胶原蛋白和聚集蛋白聚糖的最高分泌量。更重要的是,MECM与KGN的持续释放的协同作用不仅可以赋予PCL/MECM-KGN μS支架优异的细胞亲和力和细胞活力保留能力,还能赋予其软骨生成活性。因此,PCL/MECM-KGN μS支架有望在半月板组织工程领域具有良好的应用前景。