文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有光热性能和增强纳米酶活性的铜单原子催化剂用于细菌感染伤口治疗。

Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy.

作者信息

Wang Xianwen, Shi Qianqian, Zha Zhengbao, Zhu Dongdong, Zheng Lirong, Shi Luoxiang, Wei Xianwen, Lian Lian, Wu Konglin, Cheng Liang

机构信息

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, PR China.

School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.

出版信息

Bioact Mater. 2021 Apr 30;6(12):4389-4401. doi: 10.1016/j.bioactmat.2021.04.024. eCollection 2021 Dec.


DOI:10.1016/j.bioactmat.2021.04.024
PMID:33997515
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8111038/
Abstract

Nanozymes have become a new generation of antibiotics with exciting broad-spectrum antibacterial properties and negligible biological toxicity. However, their inherent low catalytic activity limits their antibacterial properties. Herein, Cu single-atom sites/N doped porous carbon (Cu SASs/NPC) is successfully constructed for photothermal-catalytic antibacterial treatment by a pyrolysis-etching-adsorption-pyrolysis (PEAP) strategy. Cu SASs/NPC have stronger peroxidase-like catalytic activity, glutathione (GSH)-depleting function, and photothermal property compared with non-Cu-doped NPC, indicating that Cu doping significantly improves the catalytic performance of nanozymes. Cu SASs/NPC can effectively induce peroxidase-like activity in the presence of HO, thereby generating a large amount of hydroxyl radicals (•OH), which have a certain killing effect on bacteria and make bacteria more susceptible to temperature. The introduction of near-infrared (NIR) light can generate hyperthermia to fight bacteria, and enhance the peroxidase-like catalytic activity, thereby generating additional •OH to destroy bacteria. Interestingly, Cu SASs/NPC can act as GSH peroxidase (GSH-Px)-like nanozymes, which can deplete GSH in bacteria, thereby significantly improving the sterilization effect. PTT-catalytic synergistic antibacterial strategy produces almost 100% antibacterial efficiency against () and methicillin-resistant (). experiments show a better PTT-catalytic synergistic therapeutic performance on MRSA-infected mouse wounds. Overall, our work highlights the wide antibacterial and anti-infective bio-applications of Cu single-atom-containing catalysts.

摘要

纳米酶已成为新一代抗生素,具有令人兴奋的广谱抗菌特性且生物毒性可忽略不计。然而,其固有的低催化活性限制了它们的抗菌性能。在此,通过热解-蚀刻-吸附-热解(PEAP)策略成功构建了铜单原子位点/N掺杂多孔碳(Cu SASs/NPC)用于光热催化抗菌治疗。与未掺杂铜的NPC相比,Cu SASs/NPC具有更强的类过氧化物酶催化活性、谷胱甘肽(GSH)消耗功能和光热性能,表明铜掺杂显著提高了纳米酶的催化性能。Cu SASs/NPC在HO存在下可有效诱导类过氧化物酶活性,从而产生大量羟基自由基(•OH),这些自由基对细菌有一定的杀伤作用,使细菌对温度更敏感。近红外(NIR)光的引入可产生热疗来对抗细菌,并增强类过氧化物酶催化活性,从而产生额外的•OH来破坏细菌。有趣的是,Cu SASs/NPC可作为类谷胱甘肽过氧化物酶(GSH-Px)纳米酶,它可以消耗细菌中的GSH,从而显著提高杀菌效果。光热疗法-催化协同抗菌策略对()和耐甲氧西林()的抗菌效率几乎达到100%。实验表明在耐甲氧西林金黄色葡萄球菌感染的小鼠伤口上具有更好的光热疗法-催化协同治疗性能。总体而言,我们的工作突出了含铜单原子催化剂广泛的抗菌和抗感染生物应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/a7df33228dad/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/529b15f6f6b3/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/ccb124be9ec6/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/92e8c1872381/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/33829f5a3491/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/cff314c59ad9/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/d49f18f36bc2/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/2de7c4af2edf/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/6d888ccaddd7/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/a7df33228dad/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/529b15f6f6b3/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/ccb124be9ec6/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/92e8c1872381/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/33829f5a3491/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/cff314c59ad9/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/d49f18f36bc2/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/2de7c4af2edf/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/6d888ccaddd7/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05a1/8111038/a7df33228dad/gr7.jpg

相似文献

[1]
Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy.

Bioact Mater. 2021-4-30

[2]
Liquid exfoliation of VC nanodots as peroxidase-like nanozymes for photothermal-catalytic synergistic antibacterial treatment.

Acta Biomater. 2022-9-1

[3]
GSH-depleting and HO-self-supplying hybrid nanozymes for intensive catalytic antibacterial therapy by photothermal-augmented co-catalysis.

Acta Biomater. 2023-1-1

[4]
Glutathione-depletion reinforced enzyme catalytic activity for photothermal assisted bacterial killing by hollow mesoporous CuO.

J Mater Chem B. 2022-11-9

[5]
An NIR-II-enhanced nanozyme to promote wound healing in methicillin-resistant Staphylococcus aureus infections.

Acta Biomater. 2024-4-15

[6]
Ultralow Loading Copper-Intercalated MoO Nanobelts with High Activity against Antibiotic-Resistant Bacteria.

ACS Appl Mater Interfaces. 2024-4-10

[7]
Biodegradable Nickel Disulfide Nanozymes with GSH-Depleting Function for High-Efficiency Photothermal-Catalytic Antibacterial Therapy.

iScience. 2020-7-24

[8]
A multifunctional cascade nanoreactor based on Fe-driven carbon nanozymes for synergistic photothermal/chemodynamic antibacterial therapy.

Acta Biomater. 2023-9-15

[9]
Multifunctional Magnetic Copper Ferrite Nanoparticles as Fenton-like Reaction and Near-Infrared Photothermal Agents for Synergetic Antibacterial Therapy.

ACS Appl Mater Interfaces. 2019-8-21

[10]
Iron oxide nanoparticles with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy.

Regen Biomater. 2022-6-23

引用本文的文献

[1]
Stimuli-responsive nanozymes for wound healing: From design strategies to therapeutic advances.

Mater Today Bio. 2025-7-2

[2]
Group IB Metal-Based Nanomaterials for Antibacterial Applications.

Small Sci. 2025-3-9

[3]
Preparation and biomedical applications of single-metal atom catalysts.

Nat Protoc. 2025-6-20

[4]
Engineering charge density in s-block potassium single-atom nanozyme for amplified ferroptosis in glioblastoma therapy.

Mater Today Bio. 2025-5-21

[5]
Bimetallic Plasmonic Nanozyme-Based Microneedle for Synergistic Ferroptosis Therapy of Melanoma.

Adv Sci (Weinh). 2025-8

[6]
Removing Barriers to Tumor 'Oxygenation': Depleting Glutathione Nanozymes in Cancer Therapy.

Int J Nanomedicine. 2025-5-1

[7]
Employing Copper-Based Nanomaterials to Combat Multi-Drug-Resistant Bacteria.

Microorganisms. 2025-3-21

[8]
Surface Engineering-Induced d-Band Center Down-Regulation in High-Entropy Alloy Nanowires for Enhanced Nanozyme Catalysis.

Adv Sci (Weinh). 2025-7

[9]
Inactivation of antibiotic resistant bacteria by nitrogen-doped carbon quantum dots through spontaneous generation of intracellular and extracellular reactive oxygen species.

Mater Today Bio. 2024-12-24

[10]
Photodynamic and photothermal bacteria targeting nanosystems for synergistically combating bacteria and biofilms.

J Nanobiotechnology. 2025-1-23

本文引用的文献

[1]
Boosting Chemodynamic Therapy by the Synergistic Effect of Co-Catalyze and Photothermal Effect Triggered by the Second Near-Infrared Light.

Nanomicro Lett. 2020-9-2

[2]
Antibacterial metals and alloys for potential biomedical implants.

Bioact Mater. 2021-2-8

[3]
Biomedicine Meets Fenton Chemistry.

Chem Rev. 2021-2-24

[4]
Single-Atom Catalysts for Nanocatalytic Tumor Therapy.

Small. 2021-4

[5]
Gold nanoplates with superb photothermal efficiency and peroxidase-like activity for rapid and synergistic antibacterial therapy.

Chem Commun (Camb). 2021-2-2

[6]
Which is Better for Nanomedicines: Nanocatalysts or Single-Atom Catalysts?

Adv Healthc Mater. 2021-4

[7]
Photothermally triggered nitric oxide nanogenerator targeting type IV pili for precise therapy of bacterial infections.

Biomaterials. 2021-1

[8]
Near-Infrared Regulated Nanozymatic/Photothermal/Photodynamic Triple-Therapy for Combating Multidrug-Resistant Bacterial Infections via Oxygen-Vacancy Molybdenum Trioxide Nanodots.

Small. 2021-1

[9]
Single-atom nanozymes for biological applications.

Biomater Sci. 2020-12-7

[10]
Near-Infrared-Controlled Nanoplatform Exploiting Photothermal Promotion of Peroxidase-like and OXD-like Activities for Potent Antibacterial and Anti-biofilm Therapies.

ACS Appl Mater Interfaces. 2020-11-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索