Suppr超能文献

利用电子细胞计数和半机械药代动力学/药效学模型量化大肠杆菌的持留菌形成。

Quantification of persister formation of Escherichia coli leveraging electronic cell counting and semi-mechanistic pharmacokinetic/pharmacodynamic modelling.

机构信息

Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169, Berlin, Germany.

出版信息

J Antimicrob Chemother. 2021 Jul 15;76(8):2088-2096. doi: 10.1093/jac/dkab146.

Abstract

BACKGROUND

Persister formation of Escherichia coli under fluoroquinolone exposure causes treatment failure and promotes emergence of resistant strains. Semi-mechanistic pharmacokinetic/pharmacodynamic modelling of data obtained from in vitro infection model experiments comprehensively characterizes exposure-effect relationships, providing mechanistic insights.

OBJECTIVES

To quantify persister formation of E. coli under levofloxacin exposure and to explain the observed growth-kill behaviour, leveraging electronic cell counting and pharmacokinetic/pharmacodynamic modelling.

METHODS

Three fluoroquinolone-resistant clinical E. coli isolates were exposed to levofloxacin in static and dynamic in vitro infection model experiments. Complementary to plate counting, bacterial concentrations over time were quantified by electronic cell counting and amalgamated in a semi-mechanistic pharmacokinetic/pharmacodynamic model (1281 bacterial and 394 levofloxacin observations).

RESULTS

Bacterial regrowth was observed under exposure to clinically relevant dosing regimens in the dynamic in vitro infection model. Electronic cell counting facilitated identification of three bacterial subpopulations: persisters, viable cells and dead cells. Two strain-specific manifestations of the levofloxacin effect were identified: a killing effect, characterized as a sigmoidal Emax model, and an additive increase in persister formation under levofloxacin exposure. Significantly different EC50 values quantitatively discerned levofloxacin potency for two isolates displaying the same MIC value: 8 mg/L [EC50 = 17.2 (95% CI = 12.6-23.8) mg/L and 8.46 (95% CI = 6.86-10.3) mg/L, respectively]. Persister formation was most pronounced for the isolate with the lowest MIC value (2 mg/L).

CONCLUSIONS

The developed pharmacokinetic/pharmacodynamic model adequately characterized growth-kill behaviour of three E. coli isolates and unveiled strain-specific levofloxacin potencies and persister formation. The mimicked dosing regimens did not eradicate the resistant isolates and enhanced persister formation to a strain-specific extent.

摘要

背景

大肠杆菌在氟喹诺酮类药物暴露下形成持久性细胞,导致治疗失败并促进耐药菌株的出现。体外感染模型实验中获得的数据的半机械药代动力学/药效学模型全面描述了暴露-效应关系,提供了机制见解。

目的

利用电子细胞计数和药代动力学/药效学模型,量化左氧氟沙星暴露下大肠杆菌持久性细胞的形成,并解释观察到的生长-杀伤行为。

方法

将三种氟喹诺酮类耐药的临床大肠杆菌分离株暴露于静态和动态体外感染模型实验中的左氧氟沙星中。除了平板计数外,还通过电子细胞计数随时间定量细菌浓度,并将其合并到半机械药代动力学/药效学模型中(1281 个细菌和 394 个左氧氟沙星观察值)。

结果

在动态体外感染模型中,观察到在临床相关给药方案下细菌的再生长。电子细胞计数有助于鉴定三种细菌亚群:持久性细胞、存活细胞和死亡细胞。鉴定出左氧氟沙星作用的两种菌株特异性表现:杀菌作用,表现为 sigmoidal Emax 模型,以及左氧氟沙星暴露下持久性细胞形成的累加增加。定量区分了两种表现相同 MIC 值的分离株的左氧氟沙星效力的显著不同的 EC50 值:8 mg/L [EC50 = 17.2(95% CI = 12.6-23.8)mg/L 和 8.46(95% CI = 6.86-10.3)mg/L]。对于 MIC 值最低的分离株,持久性细胞的形成最为明显(2 mg/L)。

结论

所开发的药代动力学/药效学模型充分描述了三种大肠杆菌分离株的生长-杀伤行为,并揭示了菌株特异性的左氧氟沙星效力和持久性细胞形成。模拟的给药方案未能根除耐药分离株,并以菌株特异性的程度增强了持久性细胞的形成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验