Suppr超能文献

人类功能脑网络的概率映射确定了具有高度组一致性的区域。

Probabilistic mapping of human functional brain networks identifies regions of high group consensus.

机构信息

Department of Radiology, Washington University School of Medicine, USA; Department of Psychology, Northwestern University, USA.

Department of Neurology, Washington University School of Medicine, USA.

出版信息

Neuroimage. 2021 Aug 15;237:118164. doi: 10.1016/j.neuroimage.2021.118164. Epub 2021 May 15.

Abstract

Many recent developments surrounding the functional network organization of the human brain have focused on data that have been averaged across groups of individuals. While such group-level approaches have shed considerable light on the brain's large-scale distributed systems, they conceal individual differences in network organization, which recent work has demonstrated to be common and widespread. This individual variability produces noise in group analyses, which may average together regions that are part of different functional systems across participants, limiting interpretability. However, cost and feasibility constraints may limit the possibility for individual-level mapping within studies. Here our goal was to leverage information about individual-level brain organization to probabilistically map common functional systems and identify locations of high inter-subject consensus for use in group analyses. We probabilistically mapped 14 functional networks in multiple datasets with relatively high amounts of data. All networks show "core" (high-probability) regions, but differ from one another in the extent of their higher-variability components. These patterns replicate well across four datasets with different participants and scanning parameters. We produced a set of high-probability regions of interest (ROIs) from these probabilistic maps; these and the probabilistic maps are made publicly available, together with a tool for querying the network membership probabilities associated with any given cortical location. These quantitative estimates and public tools may allow researchers to apply information about inter-subject consensus to their own fMRI studies, improving inferences about systems and their functional specializations.

摘要

许多最近围绕人类大脑功能网络组织的研究都集中在对个体群体数据进行平均处理上。虽然这种群体水平的方法已经对大脑的大规模分布式系统有了相当大的了解,但它们掩盖了网络组织的个体差异,最近的研究表明这种差异是普遍存在的。这种个体变异性会在组分析中产生噪声,从而可能将参与者不同功能系统的区域平均在一起,从而限制了可解释性。然而,成本和可行性的限制可能会限制在研究中进行个体水平映射的可能性。在这里,我们的目标是利用个体水平的大脑组织信息来概率性地映射常见的功能系统,并确定具有高组内一致性的位置,以便在组分析中使用。我们在多个数据集上使用相对大量的数据来概率性地映射 14 个功能网络。所有网络都显示出“核心”(高概率)区域,但在其高变异性成分的程度上彼此不同。这些模式在四个具有不同参与者和扫描参数的数据集上得到了很好的复制。我们从这些概率图谱中生成了一组高概率的感兴趣区域(ROI);这些图谱和概率图谱一起公开提供,以及一个用于查询与任何给定皮质位置相关联的网络成员概率的工具。这些定量估计和公共工具可能允许研究人员将关于个体间一致性的信息应用于他们自己的 fMRI 研究中,从而提高对系统及其功能专业化的推断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c7c/8296467/9211c552164b/nihms-1723780-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验