Suppr超能文献

SHREAD 基因治疗平台用于旁分泌递送,可改善临床抗体的肿瘤定位和肿瘤内效果。

The SHREAD gene therapy platform for paracrine delivery improves tumor localization and intratumoral effects of a clinical antibody.

机构信息

Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland;

Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2021 May 25;118(21). doi: 10.1073/pnas.2017925118.

Abstract

The goal of cancer-drug delivery is to achieve high levels of therapeutics within tumors with minimal systemic exposure that could cause toxicity. Producing biologics directly in situ where they diffuse and act locally is an attractive alternative to direct administration of recombinant therapeutics, as secretion by the tumor itself provides high local concentrations that act in a paracrine fashion continuously over an extended duration (paracrine delivery). We have engineered a SHielded, REtargeted ADenovirus (SHREAD) gene therapy platform that targets specific cells based on chosen surface markers and converts them into biofactories secreting therapeutics. In a proof of concept, a clinically approved antibody is delivered to orthotopic tumors in a model system in which precise biodistribution can be determined using tissue clearing with passive CLARITY technique (PACT) with high-resolution three-dimensional imaging and feature quantification within the tumors made transparent. We demonstrate high levels of tumor cell-specific transduction and significant and durable antibody production. PACT gives a localized quantification of the secreted therapeutic and allows us to directly observe enhanced pore formation in the tumor and destruction of the intact vasculature. In situ production of the antibody led to an 1,800-fold enhanced tumor-to-serum antibody concentration ratio compared to direct administration. Our detailed biochemical and microscopic analyses thus show that paracrine delivery with SHREAD could enable the use of highly potent therapeutic combinations, including those with systemic toxicity, to reach adequate therapeutic windows.

摘要

癌症药物输送的目标是在最小的全身暴露(可能导致毒性)下,使肿瘤内的治疗药物达到高水平。直接在生物扩散和局部作用的部位原位产生生物制剂,是直接给予重组治疗剂的一种有吸引力的替代方法,因为肿瘤本身的分泌提供了高浓度的局部药物,以旁分泌的方式持续作用于较长时间(旁分泌输送)。我们设计了一种屏蔽的、重新靶向的腺病毒(SHREAD)基因治疗平台,该平台基于选定的表面标志物靶向特定细胞,并将其转化为分泌治疗药物的生物工厂。在概念验证中,一种临床批准的抗体被递送到模型系统中的原位肿瘤中,在该模型系统中,可以使用具有高分辨率的三维成像的被动 CLARITY 技术(PACT)进行组织清除来精确测定生物分布,并在肿瘤内进行特征量化,使肿瘤透明。我们证明了肿瘤细胞特异性转导的高水平和显著且持久的抗体产生。PACT 可以对分泌的治疗药物进行局部定量,并使我们能够直接观察到肿瘤中增强的孔形成和完整血管的破坏。与直接给药相比,抗体的原位产生使肿瘤与血清抗体浓度比值提高了 1800 倍。因此,我们的详细生化和显微镜分析表明,SHREAD 的旁分泌输送可以使包括具有全身毒性的药物在内的高活性治疗药物组合达到足够的治疗窗。

相似文献

2
Successful intracranial delivery of trastuzumab by gene-therapy for treatment of HER2-positive breast cancer brain metastases.
J Control Release. 2018 Dec 10;291:80-89. doi: 10.1016/j.jconrel.2018.10.017. Epub 2018 Oct 17.
4
Genetic delivery of an immunoRNase by an oncolytic adenovirus enhances anticancer activity.
Int J Cancer. 2015 May 1;136(9):2228-40. doi: 10.1002/ijc.29258. Epub 2014 Nov 12.
6
Adenovirus-mediated gene transfer to orthotopic hepatocellular carcinomas in athymic nude mice.
Cancer Gene Ther. 2001 Aug;8(8):573-9. doi: 10.1038/sj.cgt.7700345.
7
INGN 201: Ad-p53, Ad5CMV-p53, adenoviral p53, p53 gene therapy--introgen, RPR/INGN 201.
Drugs R D. 2007;8(3):176-87. doi: 10.2165/00126839-200708030-00005.
8
PolySia-Specific Retargeting of Oncolytic Viruses Triggers Tumor-Specific Immune Responses and Facilitates Therapy of Disseminated Lung Cancer.
Cancer Immunol Res. 2015 Jul;3(7):751-63. doi: 10.1158/2326-6066.CIR-14-0124-T. Epub 2015 Feb 19.
9
Oncolytic Adenovirus Expressing Monoclonal Antibody Trastuzumab for Treatment of HER2-Positive Cancer.
Mol Cancer Ther. 2016 Sep;15(9):2259-69. doi: 10.1158/1535-7163.MCT-15-0819. Epub 2016 Jul 25.
10
Locally delivered CD40 agonist antibody accumulates in secondary lymphoid organs and eradicates experimental disseminated bladder cancer.
Cancer Immunol Res. 2014 Jan;2(1):80-90. doi: 10.1158/2326-6066.CIR-13-0067. Epub 2013 Oct 21.

引用本文的文献

1
-targeted gene delivery using adenovirus-antibody site-specific covalent conjugates.
Mol Ther Methods Clin Dev. 2025 May 26;33(2):101497. doi: 10.1016/j.omtm.2025.101497. eCollection 2025 Jun 12.
2
Dendritic cell targeting in lymph nodes with modular adapters boosts HAdV5 and HC-HAdV5 tumor vaccination by co-secretion of IL-2v and IL-21.
Mol Ther Oncol. 2025 Apr 14;33(2):200984. doi: 10.1016/j.omton.2025.200984. eCollection 2025 Jun 18.
3
In vivo targeted gene delivery using Adenovirus-antibody molecular glue conjugates.
bioRxiv. 2025 Feb 1:2025.01.31.635969. doi: 10.1101/2025.01.31.635969.
4
DARPin-induced reactivation of p53 in HPV-positive cells.
Nat Struct Mol Biol. 2025 May;32(5):790-801. doi: 10.1038/s41594-024-01456-7. Epub 2025 Jan 9.
5
DARPins as a novel tool to detect and degrade p73.
Cell Death Dis. 2024 Dec 18;15(12):909. doi: 10.1038/s41419-024-07304-2.
6
DARPin-fused T cell engager for adenovirus-mediated cancer therapy.
Mol Ther Oncol. 2024 May 29;32(3):200821. doi: 10.1016/j.omton.2024.200821. eCollection 2024 Sep 19.
7
Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development.
Pharmaceutics. 2024 May 16;16(5):674. doi: 10.3390/pharmaceutics16050674.
8
Designed Ankyrin Repeat Proteins as Actin Labels of Distinct Cytoskeletal Structures in Living Cells.
ACS Nano. 2024 Mar 26;18(12):8919-8933. doi: 10.1021/acsnano.3c12265. Epub 2024 Mar 15.
9
FAP-retargeted Ad5 enables in vivo gene delivery to stromal cells in the tumor microenvironment.
Mol Ther. 2023 Oct 4;31(10):2914-2928. doi: 10.1016/j.ymthe.2023.08.018. Epub 2023 Aug 28.
10
Pseudotyped lentiviral vectors: Ready for translation into targeted cancer gene therapy?
Genes Dis. 2022 Apr 2;10(5):1937-1955. doi: 10.1016/j.gendis.2022.03.007. eCollection 2023 Sep.

本文引用的文献

2
Antibodies to watch in 2020.
MAbs. 2020 Jan-Dec;12(1):1703531. doi: 10.1080/19420862.2019.1703531.
3
Development and Clinical Translation of Approved Gene Therapy Products for Genetic Disorders.
Front Genet. 2019 Sep 25;10:868. doi: 10.3389/fgene.2019.00868. eCollection 2019.
4
Novel Delivery Systems for Checkpoint Inhibitors.
Medicines (Basel). 2019 Jul 11;6(3):74. doi: 10.3390/medicines6030074.
6
Antibody-Cytokine Fusions: Versatile Products for the Modulation of Anticancer Immunity.
Cancer Immunol Res. 2019 Mar;7(3):348-354. doi: 10.1158/2326-6066.CIR-18-0622.
7
In search of definitions: Cancer-associated fibroblasts and their markers.
Int J Cancer. 2020 Feb 15;146(4):895-905. doi: 10.1002/ijc.32193. Epub 2019 Feb 28.
8
Delivery technologies for cancer immunotherapy.
Nat Rev Drug Discov. 2019 Mar;18(3):175-196. doi: 10.1038/s41573-018-0006-z.
9
Entering the Modern Era of Gene Therapy.
Annu Rev Med. 2019 Jan 27;70:273-288. doi: 10.1146/annurev-med-012017-043332. Epub 2018 Nov 26.
10
Targeting VEGF pathway to normalize the vasculature: an emerging insight in cancer therapy.
Onco Targets Ther. 2018 Oct 17;11:6901-6909. doi: 10.2147/OTT.S172042. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验