Suppr超能文献

利用电子健康记录和互联网搜索信息进行准确的流感预测。

Using electronic health records and Internet search information for accurate influenza forecasting.

作者信息

Yang Shihao, Santillana Mauricio, Brownstein John S, Gray Josh, Richardson Stewart, Kou S C

机构信息

Department of Statistics, Harvard University, 1 Oxford Street, Cambridge, MA, 02138, USA.

Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02215, USA.

出版信息

BMC Infect Dis. 2017 May 8;17(1):332. doi: 10.1186/s12879-017-2424-7.

Abstract

BACKGROUND

Accurate influenza activity forecasting helps public health officials prepare and allocate resources for unusual influenza activity. Traditional flu surveillance systems, such as the Centers for Disease Control and Prevention's (CDC) influenza-like illnesses reports, lag behind real-time by one to 2 weeks, whereas information contained in cloud-based electronic health records (EHR) and in Internet users' search activity is typically available in near real-time. We present a method that combines the information from these two data sources with historical flu activity to produce national flu forecasts for the United States up to 4 weeks ahead of the publication of CDC's flu reports.

METHODS

We extend a method originally designed to track flu using Google searches, named ARGO, to combine information from EHR and Internet searches with historical flu activities. Our regularized multivariate regression model dynamically selects the most appropriate variables for flu prediction every week. The model is assessed for the flu seasons within the time period 2013-2016 using multiple metrics including root mean squared error (RMSE).

RESULTS

Our method reduces the RMSE of the publicly available alternative (Healthmap flutrends) method by 33, 20, 17 and 21%, for the four time horizons: real-time, one, two, and 3 weeks ahead, respectively. Such accuracy improvements are statistically significant at the 5% level. Our real-time estimates correctly identified the peak timing and magnitude of the studied flu seasons.

CONCLUSIONS

Our method significantly reduces the prediction error when compared to historical publicly available Internet-based prediction systems, demonstrating that: (1) the method to combine data sources is as important as data quality; (2) effectively extracting information from a cloud-based EHR and Internet search activity leads to accurate forecast of flu.

摘要

背景

准确的流感活动预测有助于公共卫生官员为异常流感活动做好准备并分配资源。传统的流感监测系统,如疾病控制与预防中心(CDC)的流感样疾病报告,比实时情况滞后1至2周,而基于云的电子健康记录(EHR)和互联网用户搜索活动中包含的信息通常近乎实时可得。我们提出一种方法,将这两个数据源的信息与历史流感活动相结合,在美国疾病控制与预防中心流感报告发布前长达4周的时间内生成美国全国流感预测。

方法

我们扩展了一种最初设计用于利用谷歌搜索追踪流感的方法(名为ARGO),将电子健康记录和互联网搜索信息与历史流感活动相结合。我们的正则化多元回归模型每周动态选择最适合流感预测的变量。使用包括均方根误差(RMSE)在内的多个指标,对2013 - 2016年期间的流感季节评估该模型。

结果

对于四个时间跨度:实时、提前1周、2周和3周,我们的方法分别将公开可用的替代方法(Healthmap flutrends)的均方根误差降低了33%、20%、17%和21%。这种准确性的提高在5%的水平上具有统计学意义。我们的实时估计正确识别了所研究流感季节的峰值时间和规模。

结论

与基于互联网的历史公开预测系统相比,我们的方法显著降低了预测误差,表明:(1)组合数据源的方法与数据质量同样重要;(2)从基于云的电子健康记录和互联网搜索活动中有效提取信息可实现准确的流感预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5b2/5423019/2083a2081327/12879_2017_2424_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验