Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02115, USA.
Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, 02115, USA.
Nat Commun. 2019 Jan 11;10(1):147. doi: 10.1038/s41467-018-08082-0.
In the presence of health threats, precision public health approaches aim to provide targeted, timely, and population-specific interventions. Accurate surveillance methodologies that can estimate infectious disease activity ahead of official healthcare-based reports, at relevant spatial resolutions, are important for achieving this goal. Here we introduce a methodological framework which dynamically combines two distinct influenza tracking techniques, using an ensemble machine learning approach, to achieve improved state-level influenza activity estimates in the United States. The two predictive techniques behind the ensemble utilize (1) a self-correcting statistical method combining influenza-related Google search frequencies, information from electronic health records, and historical flu trends within each state, and (2) a network-based approach leveraging spatio-temporal synchronicities observed in historical influenza activity across states. The ensemble considerably outperforms each component method in addition to previously proposed state-specific methods for influenza tracking, with higher correlations and lower prediction errors.
在健康威胁存在的情况下,精准公共卫生方法旨在提供有针对性、及时和针对特定人群的干预措施。能够在官方基于医疗保健的报告之前,以相关的空间分辨率估算传染病活动的准确监测方法对于实现这一目标非常重要。在这里,我们介绍了一种方法框架,该框架使用集成机器学习方法动态结合两种不同的流感跟踪技术,以在美国实现改进的州级流感活动估计。该集成背后的两种预测技术利用了(1)一种自我修正的统计方法,该方法结合了与流感相关的谷歌搜索频率、每个州的电子健康记录信息和历史流感趋势;(2)一种基于网络的方法,利用各州历史流感活动中观察到的时空同步性。与流感跟踪的先前提出的特定州方法相比,该集成方法的表现明显优于每个组成部分方法,具有更高的相关性和更低的预测误差。