Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
Brain. 2021 Sep 4;144(8):2527-2540. doi: 10.1093/brain/awab200.
Gene discovery efforts in autism spectrum disorder have identified heterozygous defects in chromatin remodeller genes, the 'readers, writers and erasers' of methyl marks on chromatin, as major contributors to this disease. Despite this advance, a convergent aetiology between these defects and aberrant chromatin architecture or gene expression has remained elusive. Recently, data have begun to emerge that chromatin remodellers also function directly on the cytoskeleton. Strongly associated with autism spectrum disorder, the SETD2 histone methyltransferase for example, has now been shown to directly methylate microtubules of the mitotic spindle. However, whether microtubule methylation occurs in post-mitotic cells, for example on the neuronal cytoskeleton, is not known. We found the SETD2 α-tubulin lysine 40 trimethyl mark occurs on microtubules in the brain and in primary neurons in culture, and that the SETD2 C-terminal SRI domain is required for binding and methylation of α-tubulin. A CRISPR knock-in of a pathogenic SRI domain mutation (Setd2SRI) that disables microtubule methylation revealed at least one wild-type allele was required in mice for survival, and while viable, heterozygous Setd2SRI/wtmice exhibited an anxiety-like phenotype. Finally, whereas RNA-sequencing (RNA-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq) showed no concomitant changes in chromatin methylation or gene expression in Setd2SRI/wtmice, primary neurons exhibited structural deficits in axon length and dendritic arborization. These data provide the first demonstration that microtubules of neurons are methylated, and reveals a heterozygous chromatin remodeller defect that specifically disables microtubule methylation is sufficient to drive an autism-associated phenotype.
自闭症谱系障碍的基因发现工作已经确定了染色质重塑基因的杂合缺陷,这些基因是染色质上甲基标记的“读取器、写入器和擦除器”,是导致这种疾病的主要因素。尽管取得了这一进展,但这些缺陷与异常染色质结构或基因表达之间的趋同病因仍然难以捉摸。最近,有数据开始表明,染色质重塑剂也可以直接作用于细胞骨架。例如,与自闭症谱系障碍强烈相关的 SETD2 组蛋白甲基转移酶现在已经被证明可以直接甲基化有丝分裂纺锤体的微管。然而,微管甲基化是否发生在有丝分裂后细胞中,例如在神经元细胞骨架上,目前尚不清楚。我们发现 SETD2 α-微管蛋白赖氨酸 40 三甲基标记存在于大脑和原代培养神经元中的微管上,并且 SETD2 C 端 SRI 结构域是结合和甲基化 α-微管蛋白所必需的。CRISPR 敲入一个致病性 SRI 结构域突变(Setd2SRI)会使微管甲基化失活,结果表明,在小鼠中至少需要一个野生型等位基因才能存活,而在有活力的情况下,杂合子 Setd2SRI/wt 小鼠表现出焦虑样表型。最后,尽管 RNA 测序(RNA-seq)和染色质免疫沉淀测序(ChIP-seq)显示 Setd2SRI/wt 小鼠的染色质甲基化或基因表达没有伴随变化,但原代神经元表现出轴突长度和树突分支结构缺陷。这些数据首次证明神经元的微管被甲基化,并揭示了一种杂合的染色质重塑缺陷,该缺陷专门使微管甲基化失活足以驱动与自闭症相关的表型。