Suppr超能文献

混合人群中具有隐私意识的亲缘关系估计。

Privacy-aware estimation of relatedness in admixed populations.

机构信息

Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

Department of Mathematics, Hanyang University, Seoul, 04763. Republic of Korea.

出版信息

Brief Bioinform. 2022 Nov 19;23(6). doi: 10.1093/bib/bbac473.

Abstract

BACKGROUND

Estimation of genetic relatedness, or kinship, is used occasionally for recreational purposes and in forensic applications. While numerous methods were developed to estimate kinship, they suffer from high computational requirements and often make an untenable assumption of homogeneous population ancestry of the samples. Moreover, genetic privacy is generally overlooked in the usage of kinship estimation methods. There can be ethical concerns about finding unknown familial relationships in third-party databases. Similar ethical concerns may arise while estimating and reporting sensitive population-level statistics such as inbreeding coefficients for the concerns around marginalization and stigmatization.

RESULTS

Here, we present SIGFRIED, which makes use of existing reference panels with a projection-based approach that simplifies kinship estimation in the admixed populations. We use simulated and real datasets to demonstrate the accuracy and efficiency of kinship estimation. We present a secure federated kinship estimation framework and implement a secure kinship estimator using homomorphic encryption-based primitives for computing relatedness between samples in two different sites while genotype data are kept confidential. Source code and documentation for our methods can be found at https://doi.org/10.5281/zenodo.7053352.

CONCLUSIONS

Analysis of relatedness is fundamentally important for identifying relatives, in association studies, and for estimation of population-level estimates of inbreeding. As the awareness of individual and group genomic privacy is growing, privacy-preserving methods for the estimation of relatedness are needed. Presented methods alleviate the ethical and privacy concerns in the analysis of relatedness in admixed, historically isolated and underrepresented populations.

SHORT ABSTRACT

Genetic relatedness is a central quantity used for finding relatives in databases, correcting biases in genome wide association studies and for estimating population-level statistics. Methods for estimating genetic relatedness have high computational requirements, and occasionally do not consider individuals from admixed ancestries. Furthermore, the ethical concerns around using genetic data and calculating relatedness are not considered. We present a projection-based approach that can efficiently and accurately estimate kinship. We implement our method using encryption-based techniques that provide provable security guarantees to protect genetic data while kinship statistics are computed among multiple sites.

摘要

背景

遗传相关性(或亲缘关系)的估计偶尔用于娱乐目的和法医学应用。虽然已经开发了许多方法来估计亲缘关系,但它们存在计算要求高的问题,并且通常对样本的同质群体祖先做出不可持续的假设。此外,在使用亲缘关系估计方法时,通常会忽略遗传隐私。在第三方数据库中发现未知的家族关系可能会引起伦理问题。在估计和报告敏感的群体水平统计数据(例如,近亲繁殖系数)时,也可能会出现类似的伦理问题,因为这涉及边缘化和污名化的问题。

结果

在这里,我们提出了 SIGFRIED,它利用现有的参考面板和基于投影的方法,简化了混合人群中的亲缘关系估计。我们使用模拟和真实数据集来演示亲缘关系估计的准确性和效率。我们提出了一个安全的联合亲缘关系估计框架,并使用基于同态加密的原语实现了一个安全的亲缘关系估计器,用于在两个不同站点的样本之间计算相关性,同时保持基因型数据的机密性。我们的方法的源代码和文档可以在 https://doi.org/10.5281/zenodo.7053352 找到。

结论

分析相关性对于识别亲属、关联研究以及估计群体水平的近亲繁殖程度非常重要。随着个体和群体基因组隐私意识的增强,需要使用隐私保护方法来估计相关性。本文提出的方法缓解了在混合、历史上孤立和代表性不足的人群中分析相关性时的伦理和隐私问题。

摘要

遗传相关性是在数据库中寻找亲属、校正全基因组关联研究中的偏差以及估计群体水平统计数据的核心数量。估计遗传相关性的方法计算要求高,并且偶尔不考虑来自混合祖先的个体。此外,使用遗传数据和计算相关性的伦理问题也没有得到考虑。我们提出了一种基于投影的方法,可以有效地、准确地估计亲缘关系。我们使用基于加密的技术来实现我们的方法,该技术提供了可证明的安全保证,以保护遗传数据,同时在多个站点之间计算亲缘关系统计数据。

相似文献

2
Estimating kinship in admixed populations.估算混合人群中的亲属关系。
Am J Hum Genet. 2012 Jul 13;91(1):122-38. doi: 10.1016/j.ajhg.2012.05.024. Epub 2012 Jun 28.
4
Privacy-preserving genotype imputation with fully homomorphic encryption.使用全同态加密的隐私保护基因型插补
Cell Syst. 2022 Feb 16;13(2):173-182.e3. doi: 10.1016/j.cels.2021.10.003. Epub 2021 Nov 9.
7
Estimating FST and kinship for arbitrary population structures.估计任意群体结构的 FST 和亲缘关系。
PLoS Genet. 2021 Jan 19;17(1):e1009241. doi: 10.1371/journal.pgen.1009241. eCollection 2021 Jan.
10
Model-free Estimation of Recent Genetic Relatedness.近期遗传相关性的无模型估计
Am J Hum Genet. 2016 Jan 7;98(1):127-48. doi: 10.1016/j.ajhg.2015.11.022.

引用本文的文献

10
Omics research in atherosclerosis.动脉粥样硬化的组学研究。
Mol Cell Biochem. 2025 Apr;480(4):2077-2102. doi: 10.1007/s11010-024-05139-1. Epub 2024 Oct 24.

本文引用的文献

2
Genome Reconstruction Attacks Against Genomic Data-Sharing Beacons.针对基因组数据共享信标的基因组重建攻击。
Proc Priv Enhanc Technol. 2021;2021(3):28-48. doi: 10.2478/popets-2021-0036. Epub 2021 Apr 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验