Suppr超能文献

推断古代数据集的生物亲缘关系:比较古代 DNA 专用软件包对低覆盖率数据的响应。

Inferring biological kinship in ancient datasets: comparing the response of ancient DNA-specific software packages to low coverage data.

机构信息

Natural History Museum, Cromwell Road, SW7 5BD, London, England.

BioArCh, University of York, YO10 5NG, York, England.

出版信息

BMC Genomics. 2023 Mar 14;24(1):111. doi: 10.1186/s12864-023-09198-4.

Abstract

BACKGROUND

The inference of biological relations between individuals is fundamental to understanding past human societies. Caregiving, resource sharing and sexual behaviours are often mediated by biological kinship and yet the identification and interpretation of kin relationships in prehistoric human groups is difficult. In recent years, the advent of archaeogenetic techniques have offered a fresh approach, and when combined with more traditional osteological and interpretive archaeological methods, allows for improved interpretation of the burial practices, cultural behaviours, and societal stratification in ancient societies. Although archaeogenetic techniques are developing at pace, questions remain as to their accuracy, particularly when applied to the low coverage datasets that results from the sequencing of DNA derived from highly degraded ancient material.

RESULTS

The performance of six of the most commonly used kinship identifcation software methods was explored at a range of low and ultra low genome coverages. An asymmetrical response was observed across packages, with decreased genome coverage resulting in differences in both direction and degree of change of calculated kinship scores and thus pairwise relatedness estimates are dependant on both package used and genome coverage. Methods reliant upon genotype likelihoods methods (lcMLkin, NGSrelate and NGSremix) show a decreased level of prediction at coverage below 1x, although were consistent in the particular relationships identified at these coverages when compared to the pseudohaploid reliant methods tested (READ, the Kennett 2017 method and TKGWV2.0). The three pseudohaploid methods show predictive potential at coverages as low as 0.05x, although the accuracy of the relationships identified is questionable given the increase in the number of relationships identifIed at the low coverage (type I errors).

CONCLUSION

Two pseudohaploid methods (READ and Kennett 2017) show relatively consistent inference of kin relationships at low coverage (0.5x), with READ only showing a significant performance drop off at ultralow coverages (< 0.2x). More generally, our results reveal asymmetrical kinship classifications in some software packages even at high coverages, highlighting the importance of applying multiple methods to authenticate kin relationships in ancient material, along with the continuing need to develop laboratory methods that maximise data output for downstream analyses.

摘要

背景

推断个体之间的生物关系是理解过去人类社会的基础。照顾、资源共享和性行为通常受到生物亲缘关系的影响,但在史前人类群体中识别和解释亲属关系是困难的。近年来,考古遗传学技术的出现提供了一种新方法,当与更传统的骨骼学和解释性考古方法结合使用时,可以改善对古代社会的埋葬习俗、文化行为和社会分层的解释。尽管考古遗传学技术发展迅速,但仍存在一些问题,特别是当应用于从高度降解的古代材料中提取的 DNA 进行测序得到的低覆盖率数据集时。

结果

在一系列低和超低基因组覆盖率下,探索了六种最常用的亲属识别软件方法的性能。在不同的软件包中观察到了不对称的反应,随着基因组覆盖率的降低,计算出的亲属分数的方向和变化程度都有所不同,因此,成对的亲缘关系估计值取决于使用的软件包和基因组覆盖率。依赖于基因型可能性的方法(lcMLkin、NGSrelate 和 NGSremix)在覆盖率低于 1x 时显示出较低的预测水平,尽管与测试的依赖假单倍体的方法(READ、Kennett 2017 方法和 TKGWV2.0)相比,在这些覆盖率下识别的特定关系是一致的。三种假单倍体方法在覆盖率低至 0.05x 时显示出预测潜力,尽管由于在低覆盖率下识别的关系数量增加(I 型错误),所识别的关系的准确性值得怀疑。

结论

两种假单倍体方法(READ 和 Kennett 2017)在低覆盖率(0.5x)下相对一致地推断出亲属关系,而 READ 仅在超低覆盖率(<0.2x)下显示出显著的性能下降。更一般地说,我们的结果显示,即使在高覆盖率下,一些软件包中的亲属关系分类也存在不对称,这突出了在古代材料中应用多种方法来验证亲属关系的重要性,以及继续需要开发最大化下游分析数据输出的实验室方法的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9b/10015695/65946ea7b152/12864_2023_9198_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验