Suppr超能文献

基于前后位和侧位 X 射线的深度学习在检测骨质疏松性椎体压缩性骨折中的比较疗效。

Comparative efficacy of anteroposterior and lateral X-ray based deep learning in the detection of osteoporotic vertebral compression fracture.

机构信息

Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Chuncheon, Korea.

Division of Software, Hallym University, Chuncheon, Korea.

出版信息

Sci Rep. 2024 Nov 18;14(1):28388. doi: 10.1038/s41598-024-79610-w.

Abstract

Magnetic resonance imaging remains the gold standard for diagnosing osteoporotic vertebral compression fractures (OVCF), but the use of X-ray imaging, particularly anteroposterior (AP) and lateral views, is prevalent due to its accessibility and cost-effectiveness. We aim to assess whether the performance of AP images-based deep learning is comparable compared to those using lateral images. This retrospective study analyzed X-ray images from two tertiary teaching hospitals, involving 1,507 patients for the training and internal test, and 104 patients for the external test. The EfficientNet-B5-based algorithms were employed to classify OVCF and non-OVCF group. The model was trained with a 1:1 balanced dataset and validated through 5-fold cross validation. Performance outcomes were compared with the area under receiver operating characteristic (AUROC) curve. Out of a total of 1,507 patients, 799 were included in the training dataset and 708 were included in the internal test dataset. The training and internal test datasets were matched 1:1 as OVCF and non-OVCF patients. The DL model showed comparable classifying performance with internal test data (N = 708, AUROC for AP, 0.915; AUROC for lateral, 0.953) and external test data (N = 104, AUROC for AP, 0.982; AUROC for lateral, 0979), respectively. The other performances including F1 score and accuracy were also comparable. Especially, The AUROC of AP and lateral x-ray image-based DL was not significantly different (p for DeLong test = 0.604). The EfficientNet-B5 algorithms using AP X-ray images shows comparable efficacy for classifying OVCF and non-OVCF compared to lateral images.

摘要

磁共振成像仍然是诊断骨质疏松性椎体压缩性骨折(OVCF)的金标准,但由于其可及性和成本效益,X 射线成像(尤其是前后位(AP)和侧位)的应用更为普遍。我们旨在评估基于 AP 图像的深度学习的性能是否与使用侧位图像的性能相当。这项回顾性研究分析了来自两家三级教学医院的 X 射线图像,其中包括 1507 名患者用于训练和内部测试,104 名患者用于外部测试。使用基于 EfficientNet-B5 的算法对 OVCF 和非 OVCF 组进行分类。该模型使用 1:1 平衡数据集进行训练,并通过 5 折交叉验证进行验证。通过接收者操作特征(AUROC)曲线下的面积来比较性能结果。在总共 1507 名患者中,799 名患者被纳入训练数据集,708 名患者被纳入内部测试数据集。训练数据集和内部测试数据集以 1:1 的比例匹配为 OVCF 和非 OVCF 患者。DL 模型在内部测试数据(N=708,AP 的 AUROC 为 0.915;侧位的 AUROC 为 0.953)和外部测试数据(N=104,AP 的 AUROC 为 0.982;侧位的 AUROC 为 0.979)中具有相当的分类性能。其他性能指标,如 F1 分数和准确性,也相当。特别是,AP 和侧位 X 射线图像的 DL 的 AUROC 没有显著差异(DeLong 检验的 p 值为 0.604)。使用 AP X 射线图像的 EfficientNet-B5 算法在分类 OVCF 和非 OVCF 方面与侧位图像具有相当的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29fd/11570669/e5e959a4ed81/41598_2024_79610_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验