Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Chuncheon, Korea.
Division of Software, Hallym University, Chuncheon, Korea.
Sci Rep. 2024 Nov 18;14(1):28388. doi: 10.1038/s41598-024-79610-w.
Magnetic resonance imaging remains the gold standard for diagnosing osteoporotic vertebral compression fractures (OVCF), but the use of X-ray imaging, particularly anteroposterior (AP) and lateral views, is prevalent due to its accessibility and cost-effectiveness. We aim to assess whether the performance of AP images-based deep learning is comparable compared to those using lateral images. This retrospective study analyzed X-ray images from two tertiary teaching hospitals, involving 1,507 patients for the training and internal test, and 104 patients for the external test. The EfficientNet-B5-based algorithms were employed to classify OVCF and non-OVCF group. The model was trained with a 1:1 balanced dataset and validated through 5-fold cross validation. Performance outcomes were compared with the area under receiver operating characteristic (AUROC) curve. Out of a total of 1,507 patients, 799 were included in the training dataset and 708 were included in the internal test dataset. The training and internal test datasets were matched 1:1 as OVCF and non-OVCF patients. The DL model showed comparable classifying performance with internal test data (N = 708, AUROC for AP, 0.915; AUROC for lateral, 0.953) and external test data (N = 104, AUROC for AP, 0.982; AUROC for lateral, 0979), respectively. The other performances including F1 score and accuracy were also comparable. Especially, The AUROC of AP and lateral x-ray image-based DL was not significantly different (p for DeLong test = 0.604). The EfficientNet-B5 algorithms using AP X-ray images shows comparable efficacy for classifying OVCF and non-OVCF compared to lateral images.
磁共振成像仍然是诊断骨质疏松性椎体压缩性骨折(OVCF)的金标准,但由于其可及性和成本效益,X 射线成像(尤其是前后位(AP)和侧位)的应用更为普遍。我们旨在评估基于 AP 图像的深度学习的性能是否与使用侧位图像的性能相当。这项回顾性研究分析了来自两家三级教学医院的 X 射线图像,其中包括 1507 名患者用于训练和内部测试,104 名患者用于外部测试。使用基于 EfficientNet-B5 的算法对 OVCF 和非 OVCF 组进行分类。该模型使用 1:1 平衡数据集进行训练,并通过 5 折交叉验证进行验证。通过接收者操作特征(AUROC)曲线下的面积来比较性能结果。在总共 1507 名患者中,799 名患者被纳入训练数据集,708 名患者被纳入内部测试数据集。训练数据集和内部测试数据集以 1:1 的比例匹配为 OVCF 和非 OVCF 患者。DL 模型在内部测试数据(N=708,AP 的 AUROC 为 0.915;侧位的 AUROC 为 0.953)和外部测试数据(N=104,AP 的 AUROC 为 0.982;侧位的 AUROC 为 0.979)中具有相当的分类性能。其他性能指标,如 F1 分数和准确性,也相当。特别是,AP 和侧位 X 射线图像的 DL 的 AUROC 没有显著差异(DeLong 检验的 p 值为 0.604)。使用 AP X 射线图像的 EfficientNet-B5 算法在分类 OVCF 和非 OVCF 方面与侧位图像具有相当的效果。