Artificial intelligence in fracture detection with different image modalities and data types: A systematic review and meta-analysis.
作者信息
Jung Jongyun, Dai Jingyuan, Liu Bowen, Wu Qing
机构信息
Department of Biomedical Informatics (Dr. Qing Wu, Jongyun Jung, and Jingyuan Dai), College of Medicine, The Ohio State University, Columbus, Ohio, United States of America.
Department of Mathematics and Statistics, Division of Computing, Analytics, and Mathematics, School of Science and Engineering (Bowen Liu), University of Missouri-Kansas City, Kansas City, Missouri, United States of America.
出版信息
PLOS Digit Health. 2024 Jan 30;3(1):e0000438. doi: 10.1371/journal.pdig.0000438. eCollection 2024 Jan.
Artificial Intelligence (AI), encompassing Machine Learning and Deep Learning, has increasingly been applied to fracture detection using diverse imaging modalities and data types. This systematic review and meta-analysis aimed to assess the efficacy of AI in detecting fractures through various imaging modalities and data types (image, tabular, or both) and to synthesize the existing evidence related to AI-based fracture detection. Peer-reviewed studies developing and validating AI for fracture detection were identified through searches in multiple electronic databases without time limitations. A hierarchical meta-analysis model was used to calculate pooled sensitivity and specificity. A diagnostic accuracy quality assessment was performed to evaluate bias and applicability. Of the 66 eligible studies, 54 identified fractures using imaging-related data, nine using tabular data, and three using both. Vertebral fractures were the most common outcome (n = 20), followed by hip fractures (n = 18). Hip fractures exhibited the highest pooled sensitivity (92%; 95% CI: 87-96, p< 0.01) and specificity (90%; 95% CI: 85-93, p< 0.01). Pooled sensitivity and specificity using image data (92%; 95% CI: 90-94, p< 0.01; and 91%; 95% CI: 88-93, p < 0.01) were higher than those using tabular data (81%; 95% CI: 77-85, p< 0.01; and 83%; 95% CI: 76-88, p < 0.01), respectively. Radiographs demonstrated the highest pooled sensitivity (94%; 95% CI: 90-96, p < 0.01) and specificity (92%; 95% CI: 89-94, p< 0.01). Patient selection and reference standards were major concerns in assessing diagnostic accuracy for bias and applicability. AI displays high diagnostic accuracy for various fracture outcomes, indicating potential utility in healthcare systems for fracture diagnosis. However, enhanced transparency in reporting and adherence to standardized guidelines are necessary to improve the clinical applicability of AI. Review Registration: PROSPERO (CRD42021240359).