Suppr超能文献

小梁骨类器官:一种旨在研究微重力和退变影响而设计的微米级“人源化”原型。

Trabecular bone organoids: a micron-scale 'humanised' prototype designed to study the effects of microgravity and degeneration.

作者信息

Iordachescu Alexandra, Hughes Erik A B, Joseph Stephan, Hill Eric J, Grover Liam M, Metcalfe Anthony D

机构信息

School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK.

Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, UK.

出版信息

NPJ Microgravity. 2021 May 21;7(1):17. doi: 10.1038/s41526-021-00146-8.

Abstract

Bone is a highly responsive organ, which continuously adapts to the environment it is subjected to in order to withstand metabolic demands. These events are difficult to study in this particular tissue in vivo, due to its rigid, mineralised structure and inaccessibility of the cellular component located within. This manuscript presents the development of a micron-scale bone organoid prototype, a concept that can allow the study of bone processes at the cell-tissue interface. The model is constructed with a combination of primary female osteoblastic and osteoclastic cells, seeded onto femoral head micro-trabeculae, where they recapitulate relevant phenotypes and functions. Subsequently, constructs are inserted into a simulated microgravity bioreactor (NASA-Synthecon) to model a pathological state of reduced mechanical stimulation. In these constructs, we detected osteoclastic bone resorption sites, which were different in morphology in the simulated microgravity group compared to static controls. Once encapsulated in human fibrin and exposed to analogue microgravity for 5 days, masses of bone can be observed being lost from the initial structure, allowing to simulate the bone loss process further. Constructs can function as multicellular, organotypic units. Large osteocytic projections and tubular structures develop from the initial construct into the matrix at the millimetre scale. Micron-level fragments from the initial bone structure are detected travelling along these tubules and carried to sites distant from the native structure, where new matrix formation is initiated. We believe this model allows the study of fine-level physiological processes, which can shed light into pathological bone loss and imbalances in bone remodelling.

摘要

骨骼是一个高度敏感的器官,它不断适应所承受的环境以满足代谢需求。由于其坚硬的矿化结构以及内部细胞成分难以触及,在体内对这个特殊组织进行这些研究十分困难。本手稿介绍了一种微米级骨类器官原型的开发,这一概念能够让我们在细胞-组织界面研究骨骼过程。该模型由原代雌性成骨细胞和破骨细胞组合构建而成,接种到股骨头微小梁上,在那里它们重现相关的表型和功能。随后,将构建体插入模拟微重力生物反应器(美国国家航空航天局-合成体公司)中,以模拟机械刺激减少的病理状态。在这些构建体中,我们检测到破骨细胞性骨吸收位点,与静态对照组相比,模拟微重力组的这些位点在形态上有所不同。一旦包裹在人纤维蛋白中并暴露于模拟微重力环境5天,就可以观察到大量骨质从初始结构中流失,从而进一步模拟骨质流失过程。构建体可以作为多细胞的器官型单元发挥作用。大型骨细胞突起和管状结构从初始构建体发展到毫米级的基质中。检测到来自初始骨结构的微米级碎片沿着这些小管移动,并被带到远离原生结构的部位,在那里开始形成新的基质。我们相信这个模型能够研究精细水平的生理过程,这有助于揭示病理性骨质流失和骨重塑失衡的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e76/8140135/793e161093a8/41526_2021_146_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验