Suppr超能文献

数据质量改善对利用印度人口与健康调查(DHS)数据集进行的人体测量指标患病率估计的影响。

The impact of improved data quality on the prevalence estimates of anthropometric measures using DHS datasets in India.

作者信息

Harkare Harsh Vivek, Corsi Daniel J, Kim Rockli, Vollmer Sebastian, Subramanian S V

机构信息

Centre for Modern Indian Studies (CeMIS), Georg-August University Göttingen, Göttingen, Germany.

Faculty of Medicine, University of Ottawa, Post - 501 Smyth Road, Box 241, Ottawa, ON, K1H 8L6, Canada.

出版信息

Sci Rep. 2021 May 21;11(1):10671. doi: 10.1038/s41598-021-89319-9.

Abstract

The importance of data quality to correctly determine prevalence estimates of child anthropometric failures has been a contentious issue among policymakers and researchers. Our research objective was to ascertain the impact of improved DHS data quality on the prevalence estimates of stunting, wasting, and underweight. The study also looks for the drivers of data quality. Using five data quality indicators based on age, sex, anthropometric measurements, and normality distribution, we arrive at two datasets of differential data quality and their estimates of anthropometric failures. For this purpose, we use the 2005-2006 and 2015-2016 NFHS data covering 311,182 observations from India. The prevalence estimates of stunting and underweight were virtually unchanged after the application of quality checks. The estimate of wasting had fallen 2 percentage points, indicating an overestimation of the true prevalence. However, this differential impact on the estimate of wasting was driven by the flagging procedure's sensitivity and was in accordance with empirical evidence from existing literature. We found DHS data quality to be of sufficiently high quality for the prevalence estimates of stunting and underweight, to not change significantly after further improving the data quality. The differential estimate of wasting is attributable to the sensitivity of the flagging procedure.

摘要

数据质量对于正确确定儿童人体测量失败率估计值的重要性,一直是政策制定者和研究人员之间存在争议的问题。我们的研究目标是确定改善后的人口与健康调查(DHS)数据质量对发育迟缓、消瘦和体重不足患病率估计值的影响。该研究还探寻了数据质量的驱动因素。基于年龄、性别、人体测量数据和正态分布,我们使用五个数据质量指标,得出了两个数据质量不同的数据集及其人体测量失败率估计值。为此,我们使用了2005 - 2006年和2015 - 2016年印度全国妇女与儿童健康调查(NFHS)数据,涵盖311,182条观测数据。在应用质量检查后,发育迟缓和体重不足的患病率估计值几乎没有变化。消瘦率估计值下降了2个百分点,表明对真实患病率存在高估。然而,对消瘦率估计值的这种差异影响是由标记程序的敏感性驱动的,并且与现有文献中的实证证据一致。我们发现,对于发育迟缓和体重不足的患病率估计而言,人口与健康调查(DHS)数据质量已经足够高,在进一步提高数据质量后,患病率估计值不会有显著变化。消瘦率的差异估计归因于标记程序的敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b506/8140149/84653ec8bd6d/41598_2021_89319_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验