Feng Yuan, Xiao Luo, Chi Eric C
Department of Statistics, North Carolina State University, Raleigh, NC 27695-8203.
J Comput Graph Stat. 2021;30(1):115-124. doi: 10.1080/10618600.2020.1779080. Epub 2020 Jul 28.
Joint models are popular for analyzing data with multivariate responses. We propose a sparse multivariate single index model, where responses and predictors are linked by unspecified smooth functions and multiple matrix level penalties are employed to select predictors and induce low-rank structures across responses. An alternating direction method of multipliers (ADMM) based algorithm is proposed for model estimation. We demonstrate the effectiveness of proposed model in simulation studies and an application to a genetic association study.
联合模型在分析具有多变量响应的数据时很受欢迎。我们提出了一种稀疏多变量单指标模型,其中响应变量和预测变量通过未指定的光滑函数联系起来,并采用多个矩阵层面的惩罚项来选择预测变量并在响应变量间诱导低秩结构。我们提出了一种基于交替方向乘子法(ADMM)的算法用于模型估计。我们在模拟研究和一项基因关联研究的应用中证明了所提模型的有效性。