Suppr超能文献

通过惩罚高斯最大似然法进行同时多重响应回归和逆协方差矩阵估计

Simultaneous Multiple Response Regression and Inverse Covariance Matrix Estimation via Penalized Gaussian Maximum Likelihood.

作者信息

Lee Wonyul, Liu Yufeng

机构信息

Department of Statistics and Operations Research, Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

J Multivar Anal. 2012 Oct 1;111:241-255. doi: 10.1016/j.jmva.2012.03.013. Epub 2012 Apr 27.

Abstract

Multivariate regression is a common statistical tool for practical problems. Many multivariate regression techniques are designed for univariate response cases. For problems with multiple response variables available, one common approach is to apply the univariate response regression technique separately on each response variable. Although it is simple and popular, the univariate response approach ignores the joint information among response variables. In this paper, we propose three new methods for utilizing joint information among response variables. All methods are in a penalized likelihood framework with weighted L(1) regularization. The proposed methods provide sparse estimators of conditional inverse co-variance matrix of response vector given explanatory variables as well as sparse estimators of regression parameters. Our first approach is to estimate the regression coefficients with plug-in estimated inverse covariance matrices, and our second approach is to estimate the inverse covariance matrix with plug-in estimated regression parameters. Our third approach is to estimate both simultaneously. Asymptotic properties of these methods are explored. Our numerical examples demonstrate that the proposed methods perform competitively in terms of prediction, variable selection, as well as inverse covariance matrix estimation.

摘要

多元回归是解决实际问题常用的统计工具。许多多元回归技术是针对单变量响应情形设计的。对于有多个响应变量的问题,一种常见方法是对每个响应变量分别应用单变量响应回归技术。尽管这种方法简单且常用,但单变量响应方法忽略了响应变量之间的联合信息。在本文中,我们提出了三种利用响应变量之间联合信息的新方法。所有方法都在惩罚似然框架下,采用加权(L(1))正则化。所提出的方法提供了给定解释变量时响应向量的条件逆协方差矩阵的稀疏估计以及回归参数的稀疏估计。我们的第一种方法是用代入估计的逆协方差矩阵来估计回归系数,第二种方法是用代入估计的回归参数来估计逆协方差矩阵。我们的第三种方法是同时进行估计。探索了这些方法的渐近性质。我们的数值例子表明,所提出的方法在预测、变量选择以及逆协方差矩阵估计方面具有竞争力。

相似文献

3
Sparse estimation of a covariance matrix.协方差矩阵的稀疏估计。
Biometrika. 2011 Dec;98(4):807-820. doi: 10.1093/biomet/asr054.
9
Sparse Multivariate Regression With Covariance Estimation.带协方差估计的稀疏多元回归
J Comput Graph Stat. 2010 Fall;19(4):947-962. doi: 10.1198/jcgs.2010.09188.
10
Shrinkage estimators for covariance matrices.协方差矩阵的收缩估计量。
Biometrics. 2001 Dec;57(4):1173-84. doi: 10.1111/j.0006-341x.2001.01173.x.

引用本文的文献

1
Connectivity Regression.连通性回归
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxaf002.
2
Covariate-Assisted Bayesian Graph Learning for Heterogeneous Data.用于异构数据的协变量辅助贝叶斯图学习
J Am Stat Assoc. 2024;119(547):1985-1999. doi: 10.1080/01621459.2023.2233744. Epub 2023 Sep 6.
3
On the Use of Minimum Penalties in Statistical Learning.关于统计学习中最小惩罚的使用
J Comput Graph Stat. 2024;33(1):138-151. doi: 10.1080/10618600.2023.2210174. Epub 2023 Jun 20.
8
Bayesian Structure Learning in Multi-layered Genomic Networks.多层基因组网络中的贝叶斯结构学习
J Am Stat Assoc. 2021;116(534):605-618. doi: 10.1080/01621459.2020.1775611. Epub 2020 Jul 24.
9
Sparse Single Index Models for Multivariate Responses.用于多变量响应的稀疏单指标模型
J Comput Graph Stat. 2021;30(1):115-124. doi: 10.1080/10618600.2020.1779080. Epub 2020 Jul 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验